Physico-chemical characterization of lignocellulosic wastes used in the cultivation of Pleurotus ostreatus

Autores

DOI:

https://doi.org/10.53660/CONJ-1756-2K64

Palavras-chave:

Structural features, Lignocellulosic degradation, Fungiculture, Productivity, Características estruturais, Degradação lignocelulósica, Fungicultura, Produtividade

Resumo

A escolha do resíduo a ser utilizado no cultivo de uma espécie fúngica deve levar em consideração a composição estrutural e química do material para que haja sucesso no seu cultivo. Assim, este estudo avaliou as características físicas e químicas dos resíduos de abacaxi e açaí e suas alterações após o cultivo de duas linhagens de Pleurotus ostreatus (474 e 542). Os fungos foram cultivados em resíduos de abacaxi, açaí e abacaxi + açaí, que foram adicionados a uma mistura de farelos, e CaCO3 na proporção de 78:20:2 p/p/p. Foram determinados os parâmetros físico-químicos e a composição centesimal dos resíduos e os substratos inicial e residual, além de serem analisados por microscopia eletrônica de varredura e difração de raios-X. De maneira geral, dentre os resíduos testados, o substrato de abacaxi apresentou características nutricionais mais interessantes para a fungicultura, além de conformação estrutural e maior disponibilidade de nutrientes. O substrato de açaí não foi adequado para o cultivo de fungos devido às suas características estruturais e alto teor de tanino. Nesse sentido, conhecer as características do material utilizado como suporte para o crescimento de cogumelos é de suma importância para o sucesso do cultivo.

Downloads

Não há dados estatísticos.

Biografia do Autor

Lorena Vieira Bentolila de Aguiar, UEA/INPA

Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Rede BIONORTE / Instituto Nacional de Pesquisas da Amazônia

Aldenora dos Santos Vasconcelos, UFAM

Programa de Pós-Graduação em Biotecnologia

Sérgio Dantas de Oliveira Júnior, INPA

Instituto Nacional de Pesquisas da Amazônia

Carla Laize dos Santos Cruz Costa, UFRN

Universidade Federal do Rio Grande do Norte

Ceci Sales-Campos, INPA

Instituto Nacional de Pesquisas da Amazônia

Larissa Ramos Chevreuil, INPA

Instituto Nacional de Pesquisas da Amazônia

Referências

AGUIAR, L. V. B.; GOUVÊA, P. R. S.; OLIVEIRA JÚNIOR, S. D.; SALES-CAMPOS, C.; CHEVREUIL, L. R. Production of commercial and Amazonian strains of Pleurotus ostreatus in plant waste. Brazilian Journal of Development, v. 8, n. 6, p. 47299–47321, 2022. DOI: https://doi.org/10.34117/bjdv8n6-299.

ANDRADE, M. C. N; JESUS, J. P. F.; VIEIRA, F. R.; VIANA, S. R. F.; SPOTO, M. H. F.; MINHONI, M. T. A. Dynamics of the chemical composition and productivity of composts for the cultivation of Agaricus bisporus strains. Brazilian Journal of Microbiology, v. 44, n. 4, p. 1139–1146, 2013. DOI: https://doi.org/10.1590/S1517-83822013000400016.

ANIKE, F. N.; YUSUF, M.; ISIKHUEMHEN, O. S. Co-substrating of peanut shells with cornstalks enhances biodegradation by Pleurotus ostreatus. Journal of Bioremediation and Biodegradation, 7(1):1-7, 2016.

ANNEPU, S.; K.; SHARMA, V. P.; BARH, A.; KUMAR, S.; SHIRUR, M.; KAMAL, S. Effects of genotype and growing substrate on bio-efficiency of gourmet and medicinal mushroom, Lentinula edodes (Berk.) Pegler. Bangladesh Journal of Botany, v. 48, n. 1, p. 129–138, 2019. DOI: https://doi.org/10.3329/bjb.v48i1.47431.

ALFIANTI, F.; MURTI, A. C.; SUTARMAN, M. B. A. Pasteurization of coconut water and rice washing water as a supplement for extending the life of oyster mushroom cultivation media. Agritech: Jurnal Fakultas Pertanian Universitas Muhammadiyah Purwokerto, v. 23, n. 1, 2021. DOI: https://doi.org/10.30595/agritech.v23i1.10194

ATOJI-HENRIQUE, K.; HENRIQUE, D. S.; GLÓRIA, L. S.; MAZARO, S. M.; CASAGRANDE, M. Influence of substrate composition on beta-glucans production and growth of Ganoderma lucidum. Journal of Agricultural Science, v. 9, n. 5, p. 190–199, 2017. DOI: https://doi.org/10.5539/jas.v9n5p190.

BALA, A.; SINGH, B. Development of an environmental-benign process for efficient pretreatment and saccharification of Saccharum biomasses for bioethanol production. Renewable Energy, v. 130, p. 12 – 24, 2019. DOI: https://doi.org/10.1016/j.renene.2018.06.033.

BARBOSA, A. M.; REBELO, V. S. M.; MARTORANO, L. G.; GIACON, V. M. Caracterização de partículas de açaí visando seu potencial uso na construção civil. Matéria, v. 24, n. 3, p. 1–11, 2019. DOI: https://doi.org/10.1590/S1517-707620190003.0750

BOEIRA, L. S.; FREITAS, P. H. B.; UCHÔA, N. R.; BEZERRA, J. A.; CÁD, S. V.; DUVOISIN JUNIOR, S.; ALBUQUERQUE, P. M.; MAR, J. M.; RAMOS, A. S.; MACHADO, M. B.; MACIEL, L. R. Chemical and sensorial characterization of a novel alcoholic beverage produced with native acai (Euterpe precatoria) from different regions of the Amazonas state. LWT-Food Science and Technology, v. 117, p. 108632, 2020. DOI: https://doi.org/10.1016/j.lwt.2019.108632.

CARMO, C. O; RODRIGUES, M. S.; SILVA, F.; IRINEU, T. G. M.; SOARES, A. C. F. Spent mushroom substrate of Pleurotus ostreatus kummer increases basil biomass and essential oil yield. Surgical & Cosmetic Dermatology, v. 34, n. 3, p. 548-558, 2021, https://doi.org/10.1590/1983-21252021v34n306rc.

CARVALHO, V. D.; PAULA, M. B.; ABREU, C. M. P.; CHAGAS, S. J. R. Efeito da época de colheita da planta na composição química das folhas do abacaxizeiro. Pesquisa Agropecuária Brasileira, v. 26, n. 10, p. 1655–1661, 1991.

CORREA, B. A.; PARREIRA, M. C.; MARTINS, D. S.; RIBEIRO, C.; SILVA, E. M. D. Reaproveitamento de resíduos orgânicos regionais agroindustriais da Amazônia Tocantina como substratos alternativos na produção de mudas de alface. Revista Brasileira de Agropecuária Sustentável, v. 9. n. 1, 2019. DOI: https://doi.org/10.21206/rbas.v9i1.7970

COSTA, R. G.; ANDREOLA, K.; MATTIETTO, R. A.; FARIA, L. J. G.; TARANTO, O. P. Effect of operating conditions on the yield and quality of açai (Euterpe oleracea Mart.) powder produced in spouted bed. LWT-Food Science and Technology, v. 64, n. 2, p. 1196–1203, 2015. DOI: https://doi.org/10.1016/j.lwt.2015.07.027.

CHANG, S. T.; MILES, P.G. Mushrooms: Cultivation, Nutritional Value, Medicinal Effect, and Environmental Impact. 2 ed. CRC Press, Boca Raton, Florida, 451 p, 2004.

FARIA, S. P.; MELO, G. R.; CINTRA, L. C.; RAMOS, L. P.; JESUINO, R. S. A.; ULHOA, C. J.; FARIA, F. P. Production of cellulases and xylanases by Humicola grisea var. thermoidea and application in sugarcane bagasse arabinoxylan hydrolysis. Industrial Crops and Products, v. 158, p. 112968, 2020, DOI: https://doi.org/10.1016/j.indcrop.2020.112968.

FERREIRA, D.F. Sisvar: a computer analysis system to fixed effects split plot type designs. Revista Brasileira de Biometria, v. 37, n. 4, p. 529–535, 2019. DOI: https://doi.org/10.28951/rbb.v37i4.450.

FURLANI, R. P. Z.; GODOY, H. T. Valor nutricional de cogumelos comestíveis: uma revisão. Revista do Instituto Adolfo Lutz, v. 64, n. 2, 149–154, 2005.

GONG, X.; LI, S.; CARSON, M. A.; CHANG, S. X.; WU, Q.; WANG, L.; AN, Z.; SUN, X. Spent mushroom substrate and cattle manure amendments enhance the transformation of garden waste into vermicomposts using the earthworm Eisenia fetida. Journal Environmental Management, v. 248, p. 109263, 2019. DOI: https://doi.org/10.1016/j.jenvman.2019.109263

GRIMM, A.; EILERTSEN, L.; CHEN, F.; HUANG, R.; ATTERHEM, L.; XIONG, S. Cultivation of Pleurotus ostreatus mushroom on substrates made of cellulose fibre rejects: product quality and spent substrate fuel properties. Waste Biomass Valor, v. 12, p. 4331–4340, 2021. DOI: https://doi.org/10.1007/s12649-020-01311-y

GONÇALVES, C. C. M.; PAIVA, P. C. A.; DIAS, E. S.; HENRIQUE, F. Avaliação do cultivo de Pleurotus sajor-caju (fries) Sing. sobre o resíduo de algodão da industria têxtil para a produção de cogumelos e para alimentação animal. Ciência e Agrotecnologia, v. 34, n. 1, p. 220–225, 2010. DOI: https://doi.org/10.1590/S1413-70542010000100028.

GOWDA, N. A. N.; MANVI, D. agriculture crop residues disinfection methods and their effects on mushroom growth. Proceedings of the Indian National Science Academy, v. 86, n. 3, p. 1177–1190, 2020. DOI: DOI: https://doi.org/10.16943/ptinsa/2020/154396

GRIMALDI, M. P.; MARQUES, M. P.; LALUCE, C.; CILLI, E. M.; SPONCHIADO, S. R. P. Evaluation of lime and hydrothermal pretreatments for efficient enzymatic hydrolysis of raw sugarcane bagasse. Biotechnology for Biofuels, n. 8, v. 1, p. 1–14, 2015. DOI: 10.1186/s13068-015-0384-y.

GUME, B.; MULETA, D.; ABATE, D. Evaluation of locally available substrates for cultivation of oyster mushroom (Pleurotus ostreatus) in Jimma, Ethiopia. African Journal of Microbiology Research, v. 7, n.20, p. 2228–2237, 2013.

HAMZAH, A. F. A.; HAMZAH, M. H.; MAN, H. C.; JAMALI, N. S.; SIAJAM, S. I.; ISMAIL, M. H. Recent Updates on the Conversion of Pineapple Waste (Ananas comosus) to Value-Added Products, Future Perspectives and Challenges. Agronomy, v. 11, n. 2221, p. 1-27, 2021. https://doi.org/10.3390/agronomy11112221

HIDAYAT, T.; AL-MAJID, F.; WAJIZAH, S.; USMAN, Y.; SAMADI. Evaluation of nutritive values and digestibility’s cacao (Theobroma cacao L.) pod husk fermented with lingzhi mushroom (Ganoderma lucidum) at different concentration and incubation time. In IOP Conference Series: Earth and Environmental Science. IOP Publishing, v. 951, n. 1, p. 012024, 2022. DOI: https://doi.org/ 10.1088/1755-1315/951/1/012024.

HU, M.; YUAN, L.; CAI, Z.; ZHANG, J.; JI, D.; ZANG, L. Ammonia Fiber Expansion Combined with White Rot Fungi to Treat Lignocellulose for Cultivation of Mushrooms. ACS Omega, v. 6, n. 47, p. 31689–31698, 2021, https://doi.org/10.1021/acsomega.1c04388.

IAL - Instituto Adolfo Lutz. Métodos Físico-Químicos para Análise de Alimentos – São Paulo: 4ª Edição. 1ª Edição Digital, 1020 p., 2008.

IVARSSON, E.; GRUDÉN, M.; SÖDERGREN, J.; HULTBERG, M. Use of faba bean (Vicia faba L.) hulls as substrate for Pleurotus ostreatus – Potential for combined mushroom and feed production. Journal of Cleaner Production, v. 313, p. 127969, 2021. DOI: https://doi.org/10.1016/j.jclepro.2021.127969.

JAYASINGHEARACHCHI, H. S.; SENEVIRATNE, G. Can mushrooms fix atmospheric nitrogen? Journal of Biosciences, v. 29, n. 3, p. 293–296, 2004. DOI https://doi.org/10.1007/BF02702611.

JEZNABADI, E. K.; JAFARPOUR, M.; EGHBALSAIED, S. King oyster mushroom production using various sources of agricultural wastes in Iran. International Journal of Recycling of Organic Waste in Agriculture, v. 5. n. 17, p. 17–24, 2016. DOI https://doi.org/10.1007/s40093-015-0113-3.

JEZNABADI, E. K.; JAFARPOUR, M.; EGHBALSAIE, S.; PESSARAKLI, M. Effects of various substrates and supplements on king oyster (Pleurotus ostreatus). Compost Science & Utilization, v. 25, p. S1–S10, 2017. DOI: https://doi.org/10.1080/1065657X.2016.1238787

KAINTHOLA, J.; KALAMDHAD, A. S.; GOUDA, V. V.; GOEL, R. Fungal pretreatment and associated kinetics of rice straw hydrolysis to accelerate methane yield from anaerobic digestion. Bioresource technology, v. 286, p. 121368, 2019, DOI: https://doi.org/10.1016/j.biortech.2019.121368.

KARIMI, K.; TAHERZADEH, M. J. A critical review on analysis in pretreatment of lignocelluloses: Degree of polymerization, adsorption/desorption, and accessibility. Bioresource Technology, v. 203, p. 348–356, 2016. DOI: https://doi.org/10.1016/j.biortech.2015.11.022.

KHOO, S. C.; MA, N. L.; PENG, W. X.; NG, K. K.; GOH, M. S.; CHEN, H. L.; TAN, S. H.; LEE, C. H.; LUANG-IN, V.; SONNE, C. Valorisation of biomass and diaper waste into a sustainable production of the medical mushroom Lingzhi Ganoderma lucidum. Chemosphere, v. 286, p. 131477, 2022. DOI: https://doi.org/10.1016/j.chemosphere.2021.131477.

LISIECKA, J.; PRASAD, R.; JASINSKA, A. The Utilisation of Pholiota nameko, Hypsizygus marmoreus, and Hericium erinaceus Spent Mushroom Substrates in Pleurotus ostreatus Cultivation. Horticulturae, v. 7, n. 10, p. 1–13, 2021. DOI: https://doi.org/10.3390/horticulturae7100396.

LIU, J.; SUN, S.; HAN, Y.; MENG, J.; CHEN, Y.; YU, J.; ZHANG, X.; MA, F. Lignin waste as co-substrate on decolorization of azo dyes by Ganoderma lucidum. Journal of the Taiwan Institute of Chemical Engineers, v. 122, p. 85–92, 2021. DOI: https://doi.org/10.1016/j.jtice.2021.04.039.

LU, X.; LI, F.; ZHOU, X.; HU, J.; LIU, P. Biomass, lignocellulolytic enzyme production and lignocellulose degradation patterns by Auricularia auricula during solid state fermentation of corn stalk residues under different pretreatments. Food Chemistry, v. 384, p. 132622, 2022, DOI: https://doi.org/10.1016/j.foodchem.2022.132622.

MAHARI, W. A. W.; PENG, W.; NAM, W. L.; YANG, H.; LEE, X. Y.; LEE, Y. K.; LIEW, R. K.; MA, N. L.; MOHAMMAD, A.; SONNE, C.; LE, Q. V.; SHOW, P. L.; CHEN, W-H.; LAM, S. S. A review on valorization of oyster mushroom and waste generated in the mushroom cultivation industry. Journal of Hazardous Materials, v. 400, p. 123156, 2020. DOI: https://doi.org/10.1016/j.jhazmat.2020.123156.

MARTINS, L. S.; SILVA, N. G. S.; CLARO, A. M.; AMARAL, N. C.; BARUD, H. S.; MULINARI, D. S. Insight on açaí seed biomass economy and waste cooking oil: Eco-sorbent castor oil-based. Journal of Environmental Management, v. 293, n. 112803, 2021. DOI: https://doi.org/10.1016/j.jenvman.2021.112803.

MELO, G. S.; COSTA, F. S.; SILVA, L. C. O cenário da produção do açaí (Euterpe spp.) no estado do Amazonas. Brazilian Journal of Development, v. 7, n. 7, p. 71536–71549, 2021. DOI: https://doi.org/10.34117/bjdv7n7-365

MESQUITA, A. L.; BARRERO, N. G.; FIORELLI, J.; CHRISTOFORO, A. L.; FARIA, L. J. G.; LAHR, F. A. R. Eco-particleboard manufactured from chemically treated fibrous vascular tissue of acai (Euterpe oleracea Mart.) Fruit: a new alternative for the particleboard industry with its potential application in civil construction and furniture. Industrial Crops and Products, v. 112, p. 644–651, 2018. DOI: https://doi.org/10.1016/j.indcrop.2017.12.074

NEPA. NÚCLEO DE ESTUDOS E PESQUISAS EM ALIMENTAÇÃO. TACO: tabela brasileira de composição de alimentos. 4. ed. Campinas: NEPA-UNICAMP, 2011.

OGUNDELE, G.; ABDULAZEEZ, R.; BAMIDELE, O. Effect of pure and mixed substrate on oyster mushroom (Pleurotus ostreatus) cultivation. The Journal of Experimental Biology, v. 2, p. 2S, 2014.

OLIVEIRA, D. N. P. S.; CLARO, P. I. C.; FREITAS, R. R.; MARTINS, M. A.; SOUZA, T. M.; SILVA, B. M. S.; MENDES, L. M.; BUFALINO, L. Enhancement of the Amazonian açaí waste fibers through variations of alkali pretreatment parameters. Chemistry & Biodiversity, v. 16, n. 9, p. e1900275, 2019, DOI: https://doi.org/10.1002/cbdv.201900275.

OTIENO, O. D.; MULAA, F. J.; OBIERO, G.; MIDIWO, J. Utilization of fruit waste substrates in mushroom production and manipulation of chemical composition. Biocatalysis and Agricultural Biotechnology, v. 39, p. 102250, 2022, DOI: https://doi.org/10.1016/j.bcab.2021.102250.

OKOLIE, J. A.; NANDA, S.; DALAI, A. K.; KOZINSKI, J. A. Chemistry and specialty industrial applications of lignocellulosic biomass. Waste and Biomass Valorization, v. 12, v. 5, p. 2145-2169, 2021, DOI: https://doi.org/10.1007/s12649-020-01123-0.

ÖZTÜRK, C.; ATILA, F. Changes in lignocellulosic fractions of growing substrates during the cultivation of Hypsizygus ulmarius mushroom and its effects on mushroom productivity. Scientia Horticulturae, v. 288, p. 110403, 2021, DOI: https://doi.org/10.1016/j.scienta.2021.110403.

PAULA, K. S.; FARIA JÚNIOR, O. L. Utilização dos restos culturais e resíduos da industrialização de abacaxi na alimentação de ruminantes: Revisão. PubVet, v. 13, n. 2, p. 1–7, 2019. DOI: https://doi.org/10.31533/pubvet.v13n2a271.1-7.

PALANGI, V.; KAYA, A.; KAYA, A.; GIANNENAS, I. Usability of mushroom cultivation substrate as a ruminant feed: anaerobic digestion using gas production techniques. Animals, v. 12, n. 12, p. 1583, 2022. DOI: https://doi.org/10.3390/ani12121583.

PANSERA, M. R.; SANTOS, A.C.A.; PAESE, K.; WASUM, R.; ROSSATO, M.; ROTA, L. D.; PAULETTI, G. F.; SERAFINI, L. A. Análise de taninos totais em plantas aromáticas e medicinais cultivadas no nordeste do Rio Grande do Sul. Revista Brasileira de Farmacognosia, v. 13 n.1, p. 17–22, 2003. DOI: https://doi.org/10.1590/S0102-695X2003000100002.

PEREIRA, P. H. F., ORNAGHI JÚNIOR, H. L., COUTINHO, L. V. Obtaining cellulose nanocrystals from pineapple crown fibers by free-chlorite hydrolysis with sulfuric acid: physical, chemical and structural characterization. Cellulose, v. 27, p. 5745–5756, 2020. DOI: https://doi.org/10.1007/s10570-020-03179-6.

PETER, O. E.; PETER, G. R.; OBELE, I. I.; OWUNA, G.; DANLADI, M. M.; OBIEKIEZE, S.; AKWASHIKI, O. Utilization of Some Agro-Wastes for Cultivation of Pleurotus ostreatus (Oyster Mushroom) in Keffi Nigeria. Frontiers in Environmental Microbiology, v. 5, n. 2, p. 60-69, 2019. DOI: 10.11648/j.fem.20190502.13.

PINHEIRO, J. O. C.; GARCIA, M. V. B.; CYSNE, A. Q.; GARCIA, T. B.; ABREU, S. C. D.; SOUZA, L. V. Avaliação econômico-financeira da produção de abacaxi na mesorregião central do Amazonas, AM. Embrapa Amazônia Ocidental, Manaus, 2020, p. 26.

REZENDE, C. A.; LIMA, M. A.; MAZIERO, P.; AZEVEDO, E. R.; GARCIA, W.; POLIKARPOV, I. Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnology for biofuels, v. 4, n.1, p. 1–19, 2011. DOI: https://doi.org/10.1186/1754-6834-4-54.

SALES-CAMPOS, C.; ARAUJO, L. M.; MINHONI, M. T. A.; ANDRADE, M. C. Análise físico-química e composição nutricional da matéria prima e de substratos pré e pós cultivo de Pleurotus ostreatus. Interciencia, v. 35, n. 1, p. 70–76, 2010.

SALES-CAMPOS, C.; ANDRADE, M. C. N. Aproveitamento de resíduos madeireiros para o cultivo do cogumelo comestível Lentinus strigosus de ocorrência na Amazônia. Acta Amazonica, v. 41, n. 1, p. 1–8, 2011. DOI: https://doi.org/10.1590/S0044-59672011000100001.

SÁNCHEZ, J. E. V.; ROYSE, D. J. La biología y el cultivo de Pleurotus spp. ECOSUR, Chiapas, México, 290p., 2001.

SANTOS, F. A.; QUEIRÓZ, J. H.; COLODETTE, J. L.; FERNANDES, S. A.; GUIMARÃES, V. M.; REZENDE, S. T. Potencial da palha de cana-de-açúcar para produção de etanol. Quimica Nova, v. 35, n. 5, p. 1004–1010, 2012. DOI: https://doi.org/10.1590/S0100-40422012000500025.

SEGAL, L.; CREELY, J. J.; MARTIN, A. E.; CONRAD, C. M. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal, v. 29, n. 10, p. 786–794, 1959. DOI: https://doi.org/10.1177%2F004051755902901003.

SHIN, S. K.; KOA, Y. J.; HYEON, J. E.; HAN, S. O. Studies of advanced lignin valorization based on various types of lignolytic enzymes and microbes. Bioresource Technology, v. 289, n. 121728, p. 1–8, 2019.

SINGH, M. P. Biodegradation of lignocellulosic wastes through cultivation of Pleurotus sajor–caju. Science and Cultivation of Edible Fungi, Maastricht, Netherlands, 2000, p. 517–521.

SOLANILLA‐DUQUE, J. F.; SALAZAR‐SÁNCHEZ, M. D. R.; HERRERA, R. R. Potential of lignocellulosic residues from coconut, fique, and sugar cane as substrates for Pleurotus and Ganoderma in the development of biomaterials. Environmental Quality Management, p. 1–11, 2021, DOI: https://doi.org/10.1002/tqem.21826.

SOLIKHIN, A.; HADI, Y. S.; MASSIJAYA, M. Y.; NIKMATIN, S.; SUZUKI, S.; KOJIMA, Y.; KOBORI, H. Properties of poly (vinyl alcohol)/chitosan nanocomposite films reinforced with oil palm empty fruit bunch amorphous lignocellulose nanofibers. Journal of Polymers and the Environment, v. 26, n. 8, p. 3316–3333, 2018. DOI: https://doi.org/10.1007/s10924-018-1215-6.

SOUSA, R. S.; NOVAIS, T. S.; BATISTA, F. O.; ZUÑIGA, A. D. G. Sensory analysis of cookie developed with pineapple shell flour (Ananas comosus (L.) Merril). Research, Society and Development, v. 9, n. 4, p. e45942816, 2020. DOI: https://doi.org/10.33448/rsd-v9i4.2816.

SIVARAMAKRISHNAN, R.; RAMPRAKASH, B.; RAMADOS, G.; SURESH, S.; PUGAZHENDHI, A.; INCHAROENSAKDI, A. High potential of Rhizopus treated rice bran waste for the nutrient-free anaerobic fermentative biohydrogen production. Bioresource Technology, v. 319, n. 124193, p. 1-7, 2021. DOI: https://doi.org/10.1016/j.biortech.2020.124193.

SILVA R. J. F.; POTIGUARA R. C. V. Substâncias ergásticas foliares de espécies amazônicas de Oenocarpus Mari. (Arecaceae): caracterização histoquímica e ultra-estrutural. Acta Amazonica, v. 39, n.4, p.793–798, 2008. DOI: https://doi.org/10.1590/1809-4392201804751.

SUMAN, S. K.; MALHOTRA, M.; KURMI, A. K.; NARANI, A.; BHASKAR, T.; GHOSH, S.; JAIN, S. I. Jute sticks biomass delignification through laccase-mediator system for enhanced saccharification and sustainable release of fermentable sugar. Chemosphere, v. 286, p. 131687, 2022. DOI: https://doi.org/10.1016/j.chemosphere.2021.131687.

SUWANNARACH, N.; KUMLA, J.; ZHAO, Y.; KAKUMYAN, P. Cultivation Substrate and Microbial Community on Improving Mushroom Productivity: A Review. Biology, v. 11, n. 4, p. 569, 2022. DOI: https://doi.org/10.3390/biology11040569.

TAVARWISA, D. M.; GOVERA, C.; MUTETWA, M.; NGEZIMANA, W. Evaluating the Suitability of Baobab Fruit Shells as Substrate for Growing Oyster Mushroom (Pleurotus ostreatus). International Journal of Agronomy, v. 2021, p. 1- 7, 2021. DOI: https://doi.org/10.1155/2021/6620686.

TEDESCO, M. J.; GIANELLO, C.; BISSANI, C. A.; BOHNEN, H.; VOLKWEISS, S. J. Análises de solo, plantas e outros materiais. 2ª ed. UFRGS, 1995, 174 p.

VAN SOEST, P. J. Use of detergents in the analysis of fibrous feeds. A rapid method for the determination of fiber and lignin. Journal of the Association of Official Agricultural Chemists, v. 46, p. 829–835, 1963.

VAN SOEST, P. J.; WINE, R. H. Determination of lignin and cellulose in acid detergent fiber with permanganate. Journal of the Association of Official Agricultural Chemists, v. 51, p. 780–785, 1968.

XIROS, C.; SHAHAB, R. L.; STUDER, M. H. P. A cellulolytic fungal biofilm enhances the consolidated bioconversion of cellulose to short chain fatty acids by the rumen microbiome. Applied microbiology and biotechnology, v. 103, n. 8, p. 3355-3365, 2019. DOI: https://doi.org/10.1007/s00253-019–09706-1

YULISTIANI, D.; PUASTUTI, W.; WINA, E. Effect of processing on nutritive value of corn cobs: Chemical composition and in vitro digestibility. Jurnal Ilmu Ternak dan Veteriner, v. 17, n. 1, p. 59–66, 2012.

ZHANG, F.; LAN, W.; LI, Z.; ZHANG, A.; TANG, B.; WANG, H.; WANG, X.; REN, J.; LIU, C. Co-production of functional xylo-oligosaccharides and fermentable sugars from corn stover through fast and facile ball mill-assisted alkaline peroxide Pretreatment. Bioresource Technology, v. 337, p. 125327, 2021. DOI: https://doi.org/10.1016/j.biortech.2021.125327.

ZHAO, X.; ZHANG, L.; LIU, D. Biomass recalcitrance. Part II: fundamentals of different pre-treatments to increase the enzymatic digestibility of lignocelluloses. Biofuels, Bioproducts and Biorefining, v. 6, p. 561–579, 2012.

Downloads

Publicado

2022-10-06

Como Citar

Aguiar, L. V. B. de ., Vasconcelos, A. dos S., Oliveira Júnior, S. D. de, Costa, C. L. dos S. C., Sales-Campos, C., & Chevreuil, L. R. (2022). Physico-chemical characterization of lignocellulosic wastes used in the cultivation of Pleurotus ostreatus. Conjecturas, 22(14), 311–332. https://doi.org/10.53660/CONJ-1756-2K64