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ABSTRACT 

Pyocyanin is an active redox phenazine of intense blue color and specific to Pseudomonas aeruginosa. The 

synthesis of the molecule confers different benefits to the bacterium. Pyocyanin can control its growth and 

persistence in environments with high nutritional pressures, forming biofilms. As well, synthesis of 

pyocyanin enables P. aeruginosa tolerate and uptake highly toxic compounds such as polycyclic aromatic 

hydrocarbons (PAHs), considered the most dangerous compounds among all molecules found in crude oil 

and petroderivatives. Additionally, pyocyanin increases the bioavailability of PAHs and its metabolites are 

used to synthetize crucial molecules for the biodegradation of other PAHs. On the other hand, oil 

hydrocarbons can serve as oxygen vectors during the synthesis of pyocyanin, contributing to the 

sustainability of the biodegradation process. This review is a compilation of recent advances reported in 

the literature about the relationship between pyocyanin expression and the hydrocarbonoclastic activity of 

P. aeruginosa. This characteristic, for the pyocyanin-deficient strains, is important for the degradation of 

PAHs, a topic that has been unevenly studied.  
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RESUMO 

A piocianina é uma fenazina redox ativa de cor azul intensa, específica da Pseudomonas aeruginosa e a 

síntese da molécula confere diferentes benefícios à bactéria. A piocianina pode controlar seu crescimento 

e persistência em ambientes com altas pressões nutricionais, formando biofilmes. Além disso, a síntese de 

piocianina permite que a bactéria tolere e absorva compostos altamente tóxicos, como os hidrocarbonetos 

aromáticos policíclicos (HPA), considerados os compostos mais perigosos entre todas as moléculas 

presentes no petróleo bruto e petroderivados. Além disso, a piocianina aumenta a biodisponibilidade dos 

HPA e seus metabólitos, usados para sintetizar moléculas cruciais para a biodegradação de outros HPA. 

Por outro lado, hidrocarbonetos de petróleo podem servir como vetores de oxigênio durante a síntese de 

piocianina, contribuindo para a sustentabilidade do processo de biodegradação. Esta revisão é uma 

compilação dos avanços recentes relatados na literatura sobre a relação entre a expressão de piocianina e a 

atividade hidrocarbonoclástica de P. aeruginosa. Essa característica nas linhagens piocianina-deficientes é 

importante para a degradação de HPA, um tema ainda pouco estudado. 
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INTRODUCTION  

Commercial oil exploration has established a strong dependence on human 

activity throughout its modern history, promoting significant benefits to society from the 

application of this raw material to various sectors of industry (BLACK, 2020). The major 

collateral effects of this dependence, however, have been their environmental 

repercussions along the entire oil chain (KHARAKA et al., 2005). Because petroleum 

comprises a complex mixture of organic compounds with a predominance of 

hydrocarbons, impacts on the environment are inevitable, especially caused by the most 

recalcitrant molecules (VARJANI, 2017). Polycyclic Aromatic Hydrocarbons (PAHs) are 

recalcitrant because their stability in the chemical structure helps them to adsorb easily 

into different matrices (UKALSKA-JARUGA et al., 2020). As well, their absorbance by 

plant and animal cells causes disturbances in the food chain, and may lead to mutagenesis 

and cancer (QUADEER et al., 2019; SANTOS et al., 2014). 

Given all these negative health impacts of PAHs, ecofriendly strategies to remove 

them is welcome (NAEEM; QAZI, 2020). The use of hydrocarbonoclastic microbes 

offers the possibility of total clean up employing various sustainable techniques 

(SANGWAN; DUKARE, 2018). The ability of bacteria to exhibit a diverse catalytic 

metabolic capacity has been known since the early 20th century, with research showing 

these microbes to be suitable agents for biodegradation (mineralization) and 

biotransformation (modification of organic compounds) of PAHs and other oil 

hydrocarbons (SILVA et al., 2021). 

This paper highlights the potential for cleaning up PAHs from the environment by 

Pseudomonas aeruginosa, a ubiquitous rod-shaped bacterium acknowledged for its 

remarkable metabolic ability to enhance the natural biodegradation of various xenobiotic 

pollutants (LIU et al., 2022; PALLERONI, 2010). P. aeruginosa is also a species that 

easily adapts to hostile environments with strongly limiting factors, including those with 

organic matter difficult to uptake. The sense of limiting nutritional conditions leads P. 

aeruginosa to differentiation, forming subpopulations of metabolically inactive cells as a 

survival strategy in PAHs-contaminated sediments (CIOFU; TOLKER-NIELSEN, 

2019). The catabolite repressor control protein is involved in this strategy (ZHANG et al., 

2012), but part of these mechanisms can also be attributed to pyocyanin synthesis 

(VANDRISSE et al., 2021). The pyocyanin molecule is specific to P. aeruginosa, and it 

is synthesized by a significant number of the total strains (MAVRODI et al., 2001). As a 
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redox-active molecule, pyocyanin can contribute to an increase in the bioavailability of 

various organic compounds (ASHOUR et al., 2021). In addition, pyocyanin is a signaling 

molecule that regulates gene expression in response to fluctuations in cell-population 

density (READING; SPERANDIO, 2006), important in the process of biodegradation of 

toxic compounds. 

There is a lack of understanding in our knowledge about the correlation of the role 

of pyocyanin to the hydrocarbonoclastic activity of P. aeruginosa; the little material 

available in the literature, however, provides some ideas and suggests some areas of 

research that may be investigated to understand better the ecological niche of the 

bacterium. 

 

WHAT WE KNOW ABOUT PAHs AND MICROBIAL DENSITY 

PAHs are hydrocarbons whose chemical structure is formed by two or more 

aromatic rings or condensed cyclopentanes, making these molecules chemically stable, 

with low water solubility and high partition coefficients (POATER et al., 2018; 

MANZETTI, 2013). PAHs are highly lipophilic, therefore, easily absorbed by animals 

(ALEGBELEYE et al., 2017) and accumulated in plants (YAKOVLEVA et al., 2016). 

Additionally, PAHs spontaneously adsorb to sediment and organic matter, occurring in 

aggregates in soil (GALGANI et al., 2011) and water (BELLES et al., 2016). 

PAHs are formed from incomplete combustion of organic substances (WANG et 

al. 2017) or through de novo reactions (PENG et al., 2018); however, more than 90% of 

the PAHs in the environment originate from human activity (HARITASH; KAUSHIK, 

2009). According to the United States Environmental Protection Agency (USEPA), 

sixteen types of PAHs are most prevalent in the environment (Table 1). Because they vary 

in degrees of toxicity, mutagenicity, and carcinogenicity, they are recognized as research 

priorities (RAVINDRA et al., 2008). The USEPA has been considering increasing the 

number of priority PAHs up to 26 because their occurrence, bioavailability and toxicity 

are still uncertain and deserve attention. These emerging molecules are known as non-

USEPA priority PAHs (GAO et al., 2019).  
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Table 1 – 16 priority PAHs and some of their properties 

PAHs Rings Carcinogenicity* 
Solubility 

(mg.L-1) 
Log Kw/o 

Naphthalene 2 2B 31.0 3.4 

Acenaphthene 3 3 3.8 3.9 

Acenaphthylene 3 --- 16.1 4.1 

Fluorene 3 3 1.9 4.2 

Phenanthrene 3 3 1.1 4.6 

Anthracene 3 3 4.5x10-2 4.5 

Fluoranthene 4 3 2.6x10-1 5.2 

Pyrene 4 3 13.2x10-2 5.2 

Benzo[a]anthracene 4 2B 1.1x10-2 5.6 

Chrysene 4 2B 1.5x10-3 5.9 

Benzo[b]fluoranthene 5 2B 1.5x10-3 6.1 

Benzo[k]fluoranthene 5 2B 8.0x10-4 6.8 

Benzo[a]pyrene 5 1 3.8x10-3 6.5 

Dibenzo[ah]anthracene 5 2B 5.0x10-3 6.5 

Benzo[ghi]perylene 6 3 2.6x10-4 6.6 

Indeno[1,2,3-cd]pyrene 6 2B 6.2x10-2 7.1 
*carcinogenic for humans according 2022 latest update IARC groups: 1 – carcinogenic; 2A – probably 

carcinogenic; 2B – possibly carcinogenic; 3 – not classifiable as to it carcinogenicity to humans). Data 
collect from Bojes and Pope (2007) and Cai et al. (2007). 

 

The 16 priority PAHs are classified according to the number of aromatic rings. 

Low molecular weight ones have two to three rings, while high molecular weight ones 

have between four and six rings (KIM et al., 2013). Because of the considerable 

complexity of the chemical structure of high molecular weight PAHs, they exhibit lower 

solubility in water (RABONI; VIOTTI, 2016), as well as show more lipophilicity, 

compared to low-molecular PAHs (SVERDRUP et al., 2002). 

When introduced into a given ecosystem, PAHs can disturb the food chain. The 

way these contaminants are exposed to organisms and trophic positions of these 

organisms in the food web, however, may influence the diffusion of PAHs in the 

environment (ASHOK et al., 2022). Microbes comprise the second level of the food web 

of any system (STEFFAN et al., 2015).  The presence of PAHs can lead to a natural 

microbial community that can reach inhibition as high as 70% (LABUD et al., 2007), 

because of the accumulation of toxic substances (DEMANÈCHE et al., 2004), thus 

resulting in reduction of catalytic metabolism (BOUCHEZ et al., 1995). 

Subsequently, the dominant biomass develops into a composition of 

hydrocarbonoclastic microorganisms (BENEDEK et al., 2013; TERAMOTO et al., 

2013). The hydrocarbonoclastic microbiota is also autochthonous; before the introduction 

of the contaminant, however, its number is quite low compared to other species, and can 
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increase by up to 1000 times after the introduction of hydrocarbons (JONES et al., 2020). 

In addition, this variation in the dynamics of the microbial community favors the 

biotransformation of the contaminant, since the cometabolic relationships act as a 

mechanism to produce intermediate metabolites necessary for the restoration of microbial 

population, in density and diversity, corresponding to the amount prior to contamination 

(JOHNSEN et al. al., 2005). 

 

Pseudomonas aeruginosa AND ITS LUXURIANT BLUE PIGMENT 

P. aeruginosa is a motile rod-shaped aerobic Gram-negative bacterium that 

possesses a remarkable metabolic capacity, which confers the advantage of being 

widespread in diverse environments, such as soil, fresh water, plants and animals 

(VIANA et al., 2017). This metabolic capacity also gives P. aeruginosa the possibility of 

using more than 90 organic compounds as sources of carbon and energy 

(FRIMMERSDORF et al., 2010; SCOTT-THOMAZ, 2010), including PAHs and other 

hydrocarbons (LI et al., 2021; LONG et al., 2019; JACQUES et al., 2005). This 

characteristic enables P. aeruginosa to be effective in the processes of removing oil 

hydrocarbons from different matrices (VARJANI et al., 2020; DWIVEDI et al., 2011). 

Although there are differences in genome size in terms of the origin of strains, 

whether wild, clinical, or industrial (WEISER et al., 2019), P. aeruginosa strains 

synthesize different metabolites involved in the processes that contribute to P. 

aeruginosa’s permanence in hostile environments, such as nutrient-limiting ones 

(ARRUDA et al., 2019). Edaphic microbes commonly synthesize phenazines as a 

mechanism linked to competition for exhibiting antibiosis activity (BIESSY; FILION, 

2018). Phenazines are nitrogen-heterocyclic core compounds that induce many 

physiological effects on P. aeruginosa as well as species in association with the bacterium 

(PIERSON III; PIERSON, 2010; JO et al., 2020). 

Pyocyanin (5-methyl-1-hydroxyphenazine) is the most important phenazine 

produced by P. aeruginosa. The molecule is a deep blue pigment, common in 90 to 95% 

of the strains (OLIVEIRA et al., 2019). The blue molecule is composed of two subunits 

of N-methyl-1-hydroxyphenazine synthesized by a pathway associated with chorismate 

(Figure 1), controlled by seven genes involving two operons (JAYASEELAN et al., 

2014). 
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Figure 1 – Graphical summary of the steps in the synthesis of pyocyanin 

 

Pyocyanin is a redox-active compound associated with the formation of reactive 

oxygen species (ROS) (BAHARI et al., 2017). As well, it acts as a quorum sensor (LIU; 

NIZET, 2009) and electron acceptor, enabling glucose oxidation and subsequent ATP 

formation (GLASSER et al., 2014). These mechanisms can indirectly or directly favor 

the detoxification processes of pollutants, as will be discussed later. Additionally, in 

pyocyanin-producing strains, hydrocarbon degradation is more effective (NORMAN et 

al., 2004), which reinforces the role of the pigment in the hydrocarbonoclastic activity of 

P. aeruginosa. 

 

HOW PYOCYANIN MAY BE INVOLVED IN THE TRANSFORMATION OF 

PAHs 

The microbial transformation of organic matter involves numerous cell-cell 

relationships, whose interactions ensure synchronism in the colonization and 

communication between individuals of the same or related species, aiming at the removal 

of organic carbon and its reintroduction into the food web (URVOY et al., 2022). For 

quorum-dependent microbial interactions to occur, low-molecular-weight diffusible 

molecules, called autoinducers, are produced and secreted by bacteria and serve as signals 
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of gene expression within the producing species, as well as between different and 

ecologically associated species (FEDERLE; BASSLER, 2003). 

Multiple molecules of N-acyl-homoserine lactones (AHL), which are produced 

from a minimum of 500 cells, are the main autoinducer in the two well-defined quorum 

sensing (QS) systems in P. aeruginosa, las and rhs systems (GONÇALVES; 

VASCONCELOS, 2021), also acting on events associated with hydrocarbon removal. 

Thus, it is believed that AHL-based modulation can play a pivotal role in the 

biodegradation of hydrocarbons by P. aeruginosa (HUANG et al., 2013). In addition, 

there is evidence that pyocyanin also acts indirectly as an autoinducer in the degradation 

of hydrocarbons. It is obvious that pyocyanin does not have a surfactant property, but 

there are strong indications that the molecule serves as a signaling molecule involved in 

the bases of P. aeruginosa's hydrocarbonoclastic activity (DAS; DAS, 2015), as described 

in the following items. 

 

BIOSURFACTANT SYNTHESIS 

Biosurfactants are molecules with surface-active properties, produced by 

numerous microorganisms (MOSHTAG et al., 2021). They solubilize hydrophobic 

substrates, allowing microbial access to these compounds (MNIF; GRHIBI, 2015). 

Mono- and di-rhamnolipids are the best-known glycolipid biosurfactants, largely 

produced by P. aeruginosa (KASKATEPE; YILDIZ, 2016); these molecules are 

fundamental for the degradation of PAHs (BEZZA; CHIRWA, 2016). The reduction of 

the surface tension of hydrocarbons is proportional to the degradation rate, achieving 

more than 90% degradation in axenic cultures and even higher when P. aeruginosa grows 

in consortia (MISHRA et al., 2014).  

There are reports on the correlation of pyocyanin production with the 

emulsification index of some petroderivatives. In 2013, two strains of P. aeruginosa were 

compared. The first strain produced twice as much pyocyanin as produced by the second 

strain, resulting in a 10-fold increase in the emulsification index of three petroderivatives, 

whose values ranged between 60 and 75% (DAS; MA, 2013). In 2018, a second 

independent study identified a significant correlation (92.6%) (p=0.07) between 

pyocyanin synthesis and the emulsification index of kerosene and lubricating oil in nine 

wild-type P. aeruginosa isolates. One of these strains, TGC02, produced about 28 µg/mL 
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of pyocyanin and the lubricating oil emulsification index was determined at 100% 

(VIANA et al., 2018).  

 

BIOFILM FORMATION 

The preferred lifestyle of P. aeruginosa is on biofilms (EMERENINI et al., 2015). 

These communities are cellular organizations formed by a complex mechanism 

modulated by genes and operons, involving cellular structures, QS, and cellular signaling, 

among others (NEVES et al., 2021). 

The biofilm confers protection, tolerance, and resistance to P. aeruginosa against 

toxic molecules, including PAHs (MANGWANI et al., 2016), and plays a role in the 

transformation of these molecules both in the aquatic (OMAROVA et al., 2019) and 

terrestrial environments (LOBO et al., 2002). This information may serve as a basis for 

the use of the biofilm-mediated bioremediation technique in place of using planktonic 

microorganisms (MELIANI; BENSOLTANE, 2014). 

Pyocyanin participates in various mechanisms during the cycle of a biofilm, such 

as quorum sensor (YAN; WU, 2019), phenotype expression (GUPTE et al., 2021) and 

induces production of eDNA (AMLY et al., 2021). The pyocyanin-eDNA complex 

interferes with the hydrophobicity of the cell surface and creates conditions for 

colonization and development of robust biofilms (DAS et al., 2016). In most cases, 

however, it is poorly adhered to substrates (DELIGIANNI et al., 2010). This 

characteristic, attributed to the evolution and adaptation of P. aeruginosa facilitates 

detachment and avoids competition for nutrients and space with other 

hydrocarbonoclastic bacteria (AMER et al., 2015). 

 

ENZYMATIC ACTIVITY 

Mono-oxygenases and dioxygenases are the main oxidoreductases that participate 

in the microbial degradation of oil and derivatives (ARORA et al., 2009). P. aeruginosa 

can express different genes that enable the bacteria to grow in crude oil using it as a carbon 

source. alkB and alkB-related genes that encode monooxygenases can participate in the 

conversion of long-chain saturated alkanes (BELHAJ et al., 2002), while C12O, C23O 

and PAH-RHDα genes encode dioxygenases (MUKHERJEE et al., 2017). In particular, 

the PAH-RHDα gene has an important role in the initial step of hydrocarbon degradation 

because the gene encodes enzymes that incorporate molecular oxygen into the nucleus of 
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aromatic hydrocarbons, contributing to molecular destabilization (XUE et al., 2021; 

CÉBRON et al., 2008). 

PAHs are enzymatically transformed through the action of mono- and 

dioxygenases, leading to the formation of intermediates from the central metabolism, 

which are converted by other oxygenases to form catechol (CHEBBI et al., 2017). 

Subsequently, the breakage of the catechol ring can lead to the synthesis of citrate, 

succinate and fumarate, among other citric acid cycle intermediates (ZHANG et al., 

2006). In addition, a recent study identified a complex gene network employed by P. 

aeruginosa in the degradation of PAHs. Forty-six genes related to the degradation of 

PAHs were analyzed and a heterogeneity in the gene networks and in the regrouping of 

genes was observed under different conditions. Thus, the authors hypothesized that there 

were six different aspects. This involved, for example the classification of genes and 

understanding of their mechanisms, to shed light on the role of gene interactions and 

reorganizations on cells exposed to environmental stresses (YAN; WU, 2017). 

In addition, enzyme production also depends on QS (KARIMINIK et al., 2017). 

As previously mentioned, QS systems participate in the formation of the biofilm in P. 

aeruginosa. Similarly, catabolic genes and biofilm formation are related in 

bioremediation, since gene expression can increase with increasing concentration of 

PAHs in the medium (KUMARI et al., 2020) within a certain limit, as when expression 

gene becomes deregulated. This fact was also reported with other bacteria with increased 

expression of dioxygenases (MUTHUKAMALAM et al., 2017). 

 

HYDROCARBONS MAY CONTRIBUTE TO PYOCYANIN SYNTHESIS 

Pyocyanin is synthesized in basal concentrations, starting at the end of the 

exponential phase and during the stationary phase (AGRAWAL; CHAUHAN, 2016). 

Environmental stresses, in particular nutritional deficiency, induce P. aeruginosa to 

synthesize the pigment; this serves as a competitive survival tool (RASHID; ANDLEEB, 

2018). The variation in the concentration of PO4
3+ and Ca+2 ions is a critical factor under 

these conditions (WHOOLEY; McLOUGHLIN, 1982). Additionally, phosphate is 

crucial in regulating the production of secondary metabolites; P. aeruginosa is subtly 

sensitive to changes in ion concentration. Low phosphate values cause energy reduction 

and pyocyanin can act as an intracellular regulator of ATP in starvation situations 

(GONÇALVES et al., 2021). 
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As stated earlier, the presence of PAHs in the environment is a factor that limits 

the growth of many microbes. As a P. aeruginosa strategy, redox cycling contributes to 

creation of biomass, as well as the maintenance of redox homeostasis in oxygen-limited 

environments (PRICE-WHELAN et al., 2007). Thus, some hydrocarbons, such as n-

hexadecane and n-hexane, can serve as oxygen vectors, which stimulate and increase 

pyocyanin synthesis (OZDAL et al., 2019). Oxygen is the principal component for the 

conversion of the intermediate phenazine, 5-methylphenazine-1-carboxylic acid betaine 

to pyocyanin, a reaction mediated by a flavin-dependent monooxygenase (PhzS) 

(JIMENEZ et al., 2012). Furthermore, because the pigment is a competitive respiratory 

factor and quorum sensor of P. aeruginosa (MORKUNAS et al., 2012), the increase in 

pyocyanin concentration benefits the subsequent processes involved in the 

biotransformation and biodegradation of hydrocarbons, such as biofilm formation and 

synthesis of surfactants, reaffirming the ecological importance of the bacterium. 

 

PYOCYANIN INCREASES THE BIOAVAILABILITY OF PAHs 

As already mentioned, pyocyanin is a redox-active phenazine. The molecule can 

be reduced by NADPH and NADH (LAURSEN; NIELSEN, 2004). Thus, the reactions 

of one or two reduced pyocyanin intermediate electrons with molecular oxygen generate 

ROS, particularly superoxide, that participates in the production of hydrogen peroxide 

(H2O2) and the hydroxyl radical (OH•) (SINHA et al., 2015; BRITIGAN et al., 1992). 

There is an intrinsic dependence on the availability of H2O2 to produce OH• 

(BABUPONNUSAMI; MUTHUKUMAR, 2014). In addition, the hydroxyl radical has a 

high oxidizing potential (Eÿ = 2.8V), which enables it to attack many organic compounds 

(KAHOUSH et al., 2018). 

Thus, ROS produced through the redox activity of pyocyanin may favor the 

increase in the bioavailability of chemically stable hydrocarbons, such as PAHs, through 

abiotic degradation. This process not only leads to the transformation of the contaminant, 

but also benefits the mineralization of PAHs, via microbial metabolism (NIE et al., 2020). 

In addition, the attack of ROS reduces the stability of PAHs, as well as increases the 

polarity of these compounds (MA et al., 2006). Consequently, the molecules become 

more bioavailable and potentially assimilable, and can later be converted into biomass 

and metabolites (SILVA et al., 2021). 
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PYOCYANIN AS A BIOREMEDIATION STRATEGY 

Fenton oxidation is a detoxification strategy for oil-contaminated sites because it 

can completely oxidize these contaminants (LIU et al., 2019). The treatment is based on 

a redox reaction based on the breakdown of H2O2, catalyzed by iron and other transition 

metals (Me), into hydroxyl and/or hydroxyl radical (Eq. 1), important to the oxidation of 

different organic contaminants (TALVENMӒKI et al., 2021; FRIEDRICH et al., 2017).  

 

H2O2 + Me → OH• + OH− + Me(oxided)
        (Eq. 1) 

 

Pyocyanin can be reduced by NADPH and NADH to form ROS; this can be 

applied in the transformation of organic contaminants as a bioremediation method (GU 

et al., 2016). Due to the recognition and acceptance of bioremediation in terms of causing 

lower environmental impacts compared to other techniques (PATEL et al., 2022), P. 

aeruginosa can be associated with bioremediation when applied to the bio-Fenton 

technique (RAFAQAT et al., 2022). The technique is based on the generation of H2OF2, 

catalyzed by enzymatic reaction (KAHOUSH et al., 2018). This significantly reduces 

costs, since industrial production of hydrogen peroxide is expensive (OSEGUEDA et al, 

2012). 

The bio-Fenton technique associated with bioremediation is very effective in 

detoxifying aromatic compounds because it serves as a pre-oxidation step of the 

contaminant (VALDERRAMA et al., 2009; LEE; HOSOMI, 2001). Pre-oxidation causes 

the contaminant to be more soluble in water and consequently increases its bioavailability 

(KULIK et al., 2006; NAM et al., 2001). It has been suggested, however, that the action 

of pyocyanin on bio-Fenton technique has an oxidative characteristic, without the need 

for additional treatment, reinforcing its relevance in the degradation of PAHs (NIE et al., 

2020). This technique may produce fewer negative environmental impacts, such as the 

loss of fertility in soils, as are seen in chemical treatments (LAURENT et al., 2012).  

 

CAN INTERMEDIATE PHENAZINES CONTRIBUTE TO THE 

HYDROCARBONOCLASTIC ACTIVITY OF P. aeruginosa? 

Pyocyanin is beneficial for P. aeruginosa since phenazines play an important role 

in the bacterial life cycle (MEIRELLES; NEWMAN, 2018). The conversion of 

phenazine-1-carboxylic acid (PCA) to pyocyanin occurs via an extrametabolic pathway 
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that contains both phzM and phzS enzymes. While the overexpression of PhzM 

contributes to greater production of pyocyanin (WANG et al., 2020), up to 15% of P. 

aeruginosa strains may not produce the pigment, even under laboratory conditions 

(GOVAN, 2012). 

Part of this can be attributed to a ΔphzM deficiency (MULLER; MERRETT, 

2014) or mutations in important genes such as phnAB and phzB1 (LAU et al., 2004). As 

a result, restriction from social cheating (CASTAÑEDA-TAMEZ et al., 2018) to 

reduction of virulence (ALLEN et al., 2005) may be observed. However, previous studies 

have suggested that defective pyocyanin producing mutants may exhibit competitive 

advantages or virulence because they develop compensatory mechanisms, such as 

extracellular production of the Pseudomonas quinolone signal (PQS) or simply because 

pyocyanin does not act as the only active redox metabolite (CHIEDA et al., 2007). 

The intermediate phenazine PCA serves as an electron acceptor for ATP 

production in the absence of pyocyanin. P. aeruginosa produces at least six phenazines, 

which have been correlated with amination and sulfonation (GLASSER et al., 2017). In 

addition, the correlation of the activity of these other phenazines with the degradation of 

hydrocarbons may contribute to an understanding of the mechanisms developed by strains 

of pyocyanin-deficient P. aeruginosa to maintain their hydrocarbonoclastic activity. 

Despite being reduced, in comparison to pyocyanin producing strains, 

hydrocarbonoclastic activity remains present and effective (NORMAN et al., 2004). 

In addition, it is known that pyocyanin and intermediate phenazines produced by 

P. aeruginosa can serve as a source of carbon for certain microbes, however little is 

known about how pyocyanin concentration is modulated under in situ conditions and how 

this may affect fitness of members of a distinct community (COSTA et al., 2015). This 

illustrates, however, the crucial role of P. aeruginosa in the maintenance of microsystems, 

suggesting that the bacterium may assume a strategic role as a keystone species by 

coexisting with other hydrocarbonoclastic microbes in the same community. 

 

CONCLUSION 

PAHs can alter the dynamics of ecosystem services due to their structural 

complexity and low solubility. Consequently, an application of sustainable techniques in 

the remediation of these contaminants is required. The hydrocarbonoclastic activity of P. 

aeruginosa linked to its mechanisms of tolerance to PAHs has been well reported. 
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However, the action of pyocyanin in the degradation of these pollutants has been little 

explored and requires an expansion of investigations, especially on the role of pyocyanin 

in the process and how the pigment may be used in bioprocesses for detoxifying oil-

contaminated sites. 

We suggest that pyocyanin can be crucial both in biodegradation and 

transformation of PAHs through different mechanisms that may involve cell signaling. 

By this, oxidoreductases and biosurfactants are synthesized and biofilms are formed, up 

to the point where the bioavailability of PAHs is increased by the active redox property 

of pyocyanin.  In addition, hydrocarbons can serve as oxygen vectors and influence 

pyocyanin synthesis. The pigment can serve as well as a carbon source for biomass 

formation in hydrocarbonoclastic communities. On the other hand, hydrocarbonoclastic 

activity in pyocyanin-deficient P. aeruginosa strains is also possible; we emphasize, 

however, that research on the participation of intermediate phenazines in the degradation 

of PAHs should inspire and encourage further investigations highlighted by this 

document. 
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