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ABSTRACT 

Cerrado is the second largest biome of South America, with the major extension located in Brazil. This 

biome is considered a world biodiversity hotspot due to the rich and important biodiversity contrasting with 

the high threat of destruction. Monitoring using remote sensing approaches is a crucial tool for maintaining 

and preserving this large-scale biome. Through this context, this study compared and assessed different 

scenarios with Landsat 8 OLI multispectral bands and Vegetation Indices (EVI, NDVI, and  SAVI) for the 

Cerrado mapping in Mato Grosso do Sul state, Brazil. An amount of 512 sample polygons were distributed 

into 2 classes: native vegetation and non-native vegetation. The Google Earth Engine platform was applied 

to the training and classification processes using the Random Forest method. The results showed that using 

Landsat 8 OLI bands obtained better results than the vegetation indices, with an overall accuracy and kappa 

index of 97.08% and 0.94, respectively. The mapping verified the existence of 26,80% of Cerrado original 

native vegetation in Mato Grosso do Sul state in 2019. 
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RESUMO 

O Cerrado é o Segundo maior bioma da América do Sul, com maior extensão localizado no Brasil.Este 

bioma é considerado um hotspot mundial em biodiversidade devido sua rica e importante biodiversidade 

contrastando com a alta ameaça de destruição. O monitoramento usando abordagens de sensoriamento 

remoto são cruciais para sua manutenção e preservação. Neste context, este estudo comparou e avaliou 

diferente cenários com bandas multiespectrais Landsat 8 OLI e Índices de Vegetação (EVI, NDVI e SAVI) 

para o mapeamento do Cerrado no estado de Mato Grosso do Sul, Brasil. Uma quantidade de 512 polígonos 

amostrais foram distribuídos em 2 classes: vegetação nativa e vegetação não nativa. A plataforma Google 

Earth Engine foi aplicada aos processos de treinamento e classificação utilizando o método Random Forest. 

Os resultados mostraram que o uso das bandas Landsat 8 OLI obteve melhores resultados do que os índices 

de vegetação, com acurácia geral e índice kappa de 97,08% e 0,94, respectivamente. O mapeamento 

verificou a existência de 26,80% de vegetação nativa original do Cerrado no estado de Mato Grosso do Sul 

em 2019. 

Palavras-chave: Cerrado; Índices de vegetação; Landsat 8 OLI; Mapeamento de vegetação; Machine 

learning 
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INTRODUÇÃO 

A biome is a large area with a microclimate defined by different characteristics 

such as distinct plants, animals, soil, clime, topography, phytophysiognomies, and 

ecology (COUTINHO, 2006). These regions are habitats for endemic species and 

ecosystems. However, the intensive exploration of natural resources, human activities, 

and non-planned urbanization has caused environmental deterioration. In addition, the 

consequences of these and other environmental impacts can be irreversible.         

The Cerrado is a Brazilian biome located in most of the country’s central region. 

Considered the second largest in South America and Brazil, its extension covers 23,9%  

(IBGE, 2022a; MMA, 2019) of the Brazilian territory, approximately 2 million km² 

(RATTER et al., 1997). It is distributed in 12 states from north to south of the country 

(Maranhão, Piauí, Tocantins, Goiás, Rondônia, Mato Grosso, Mato Grosso do Sul, Minas 

Gerais, Bahia, Distrito Federal, São Paulo e Paraná) and there are incidences in 3 more 

states (Amapá, Roraima, and Amazonas).   

This biome is also called and known as Brazilian Savanah. According to Coutinho 

(2006), the Cerrado is composed of Savanah areas and a complex mosaic from different 

types of other biomes, from campestral (cerrado limpo) to the forest (cerradão). These 

characteristics make the Cerrado a local with high biodiversity, varieties of soils, 

geomorphologies, vegetation, and climate. 

One of these characteristics is biodiversity, composed of more than 4000 plants 

and vertebrate endemic species, 11627 native vegetation cataloged species (MARRIS, 

2005; DURIGAN et al., 2007; STRASSBURG et al., 2017, FERREIRA et al., 2017; 

MMA, 2019). The Cerrado is essential for the hydric resources, being a water fountain 

for the three largest South American watersheds: Amazon Basin, Plata Basin, and San 

Francisco River Basin (MMA, 2019). These watersheds are also located in other biomes 

areas, showing their importance for other biomes. 

The native vegetation is crucial for this biome and, consequently, for maintaining 

Brazil's water resources. The native vegetation in Cerrado has some deep roots in tree 

species. This characteristic acts as a sponge or water transport channel to recharge the 

aquifers, contrasting with short roots from crops or exposed soil, where water evaporates 

before reaching the aquifers (SCHOLZ et al., 2002; FELLET, 2017). 

Although its great importance and rich biodiversity, Cerrado is considered a world 

biodiversity hotspot due to the existing threats (STRASSBURG et al., 2017; DURINGAN 
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et al., 2007; MARRIS, 2005). Expansions in the pasture, agriculture, burnings, and 

deforestation have been some factors of Cerrado native vegetation reduction, generating 

impacts on its ecosystem and biodiversity (BEUCHLE et al., 2015; PEREIRA; GAMA, 

2010; DURINGAN et al., 2007; WARD et al., 1992). In the last 40 years, this biome has 

been the center of intensive agriculture and expansion pasture. These changes affected 

Cerrado’s hydrologic balance (SPERA, 2016) and reduced native vegetation, generating 

negative consequences for the biome.  

Zalles et al. (2018) identified an increase in agricultural areas and the reduction of 

tree cover in Cerrado after 2006.  Beuchle et al. (2015) identified changes in vegetal cover 

in Cerrado and Caatinga between 1990 and 2010. The authors verified a continuous 

pattern of Cerrado native vegetation reduction, with an average annual variation of 0.6%. 

Furthermore, they detected that the quantity of native vegetation remaining is less than 

the number of other types of soil cover. Between 2001 and 2014, Cerrado presented a 

higher expansion in croplands, 52% of the total area of Brazil expansion (ZALLES et al., 

2018). 

The vegetal cover changing in Cerrado has been neglected compared to the 

attention given to the Amazonia (BEUCHLE et al., 2015; MARRIS, 2005). The Cerrado 

has the lowest rate of protected area than the other biomes. This situation becomes even 

more worrying with the possibility of the Cerrado not existing anymore in 2050, 

according to Strassburg et al. (2017).  

Monitoring and controlling the activities in Cerrado areas are crucial for its 

preservation and conservation. The mapping of these areas is necessary to evaluate the 

conditions of the native vegetation, land use, and land cover. In this context, the use of 

machine learning techniques applied in imageries increased in the remote sensing domain 

(CASTRO et al., 2017; CRESSON, 2019). 

Google Earth Engine (GEE) is one of the tools that enable us to perform large 

areas mapping and monitoring using machine learning methods, including Random 

Forest (RF), Support Vector Machine (SVM), CART, and Fast Naïve Bayes. GEE is a 

free and cloud platform (TSAI et al., 2018), enabling spatial data analysis that requires 

high computer performance in a fast processing and interactive way (GORELICK et al., 

2017), besides allowing to edit and create algorithms (KUMAR; MUTANGA, 2018). 

This platform is considered one of the most significant advances in the Earth observation 

monitoring process (KUMAR; MUTANGA, 2018). It has been explored for land use and 
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land cover mapping large extensions due to its fast processing (DUONG et al., 2018; 

KUMAR; MUTANGA, 2018; NYLAND et al., 2018; TSAI et al., 2018).  

Despite the advantages and possibilities provided by GEE, although it is 

increasing, there are few studies applying it in the mapping of Brazilian regions. There 

are studies in Semi-Arid (GOLDBLATT et al., 2017), mining areas in the Brazilian 

Amazon (LOBO et al., 2018), temperature analysis in a region of São Paulo (Bourscheidt, 

2017), pasture areas in Brazil (Parente; Ferreira, 2018), studies in Pantanal region 

(PEREIRA et al, 2018) and Matopiba, a region in Cerrado (Guerra et al., 2017). 

An online and free mapping platform was created using GEE, called MapBiomas 

v.7.0 (Projeto MapBiomas, 2022). This platform has produced annual maps of land cover 

in Brazil since 1985, with the last version and mapping referring to 2021. The 

classification is conducted using Landsat imageries and Random Forest (RF) algorithm.  

The main aim of this study is to compare the use of Vegetation Indices and Landsat 

8 OLI bands for Cerrado native vegetation mapping in Mato Grosso do Sul state. The 

study evaluation is important to find the best performance to map the vegetation 

characteristics and provide more accurate mappings. Also, the methodology can provide 

better information about Cerrado native vegetation, a threatened biome and so essential 

for the environment ecosystem and society. 

 

MATERIALS AND METHODS  

Study Area 

The study area corresponds to the Cerrado in Mato Grosso do Sul state. Mato 

Grosso do Sul is a Brazilian state located in the middle west region. It has frontiers with 

important Brazilian economic regions. This state is composed of Pantanal, Atlantic 

Forest, and Cerrado biomes. The Cerrado biome area corresponds to 61% of its territory 

(see Figure 1) (IBGE, 2022a). In this region, the hydrography is composed of the Paraná 

watershed in the east and the Paraguay watershed in the west. These watersheds are 

divided by Serra de Maracajú, popularly known as the great water divisor of the state. 

The state has 5,112,932,61 hectares of environmental protection area (APA), and other 

conservation unities areas such as 148,347.30 ha of Private Natural Heritage Reserve and  

327,027.06 ha of full protection conservation units (IMASUL, 2022).   

The land use of Mato Grosso do Sul has more than 3 million hectares for crops 

(permanent, temporary, and flower crop), where the temporary crops represented the 
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major area and more than 16 million hectares for pasture, according to preliminary results 

from IBGE (2022b) for 2017. Also, it has approximately more than 6 million hectares of 

forest or natural vegetation, where natural vegetation is about 285 thousand hectares. A 

little more than 5 million hectares are designated for permanent preservation or legal 

reserve, and approximately 950 thousand hectares are planted forest.  Approximately 385 

thousand hectares has agricultural and forest system. 

Among the municipalities of this state located in the Mato Grosso do Sul Cerrado 

biome, there are cities with intense production of soybean, sugar cane, corn, eucalyptus 

(also, international reference), and cattle. These characteristics allowed Mato Grosso do 

Sul to become one of the most agricultural-producing states in Brazil. According to the 

state government website Portal Governo do Estado de Mato Grosso do Sul (2019), the 

state has twelve municipalities in the ranking of the 100 most agricultural producers’ 

cities in Brazil. 

Figure 1: Cerrado biome location in Mato Grosso do Sul. 

 
Source: The authors, 2022. 

 

Image Dataset 

 Landsat satellite collection has the goal of observing natural Earth resources. 

Landsat 8 is the last version of this satellite collection active. Its characteristics are high 

accuracy positional (IRONS et al., 2012; ROY et al., 2014 and STOREY et al., 2014); 
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time of revisit of 16 days; 30 meters spatial resolution; multispectral bands (Table 1); near 

infra-red (NIR) band, two on short wave infra-red (SWIR) band and; orthorectified image 

(USGS, 2018).  The Landsat 8 OLI bands selected for this study were bands 2 to 7, shown 

in Table 1. 

On the GEE Platform, we used images from different days and months of the first 

semester of 2019. The data range selected between February 1, 2019, and July 30, 2019, 

and cloud cover of less than 2% provided a better mosaic composition. The amount of 58 

images that represented 348 bands composed the Landsat 8 OLI mosaic. 

Table 1: Landsat 8 OLI spectral bands characteristics. 

Bands Name Spectral (μm) 

2 Blue 0.452 – 0.512 

3 Green 0.533 – 0.590 

4 Red 0.636 – 0.673 

5 NIR 0.851 – 0.879 

6 SWIR-1 1.566 – 1.651 

7 SWIR-2 2.07 – 2.294 

Source: adapted from USGS (2018). 

 

Classification Process 

Classes Identification and Samples Delimitation 

Two classes were considered in the classification process: 1. native vegetation and 

2. non-native vegetation. For the native-vegetation classes, we considered areas 

composed of the canopy of trees. The non-native-vegetation area comprises pasture, 

agriculture, watercourses, silviculture, and urban areas.  

The characterization of classes allowed the sample delimitation to compose the 

dataset. A total of 512 sample polygons were split into two groups: 340 (66%) samples 

for training, 170 per class, and 172 (34%) for validation, 86 per class. The location of the 

samples is shown in Figure 2: training (yellow) and validation (red) samples. The training 

samples are in a different place than the validation. 
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Figure 2: Samples Location in Study Area 

 
Source: The authors, 2022. 

 

The polygons were drawn by hand on GEE platform, with different sizes and 

shapes. The training polygons samples cover an average of 0.8 km² per sample, and the 

validation polygons cover an average of 1.35 km² per sample. In Table 2, it is possible to 

compare the covered area of the polygons and also the number of pixels. 

Table 2: Total areas and pixel quantity of the training and validation samples 

Class 
Training Validation 

m² pixel m² pixel 

Native – 

Vegetation 
136,045,410 151,161.60 73,759,243.03 81,954.71 

Non–native 

vegetation 
229,102,270.02 254,558.08 70,847,010.10 78,718.90 

      

Scenarios 

Several scenarios were considered combining the original bands and vegetation 

indices. The following vegetation indices were considered in the classification process: 

Normalized Difference Vegetation Index (NDVI) proposed by Rouse Jr (1974), 

Enhanced Vegetation Index (EVI) proposed by Huete et al. (2002), Soil Adjusted 

Vegetation Index (SAVI), proposed by Huete (1988). 
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The NDVI (Equation 1) is a numerical index widely used for vegetation detection 

obtained through the NIR and Red bands (Table ). The index value varies from -1 to 1, 

where the higher value obtained means the reflection of the area is more detectable in the 

NIR band as dense vegetation.  

NDVI =
𝑁𝐼𝑅 − Red

NIR + Red
 (1) 

 

The EVI vegetation index, although similar to NDVI, presents the calculation of 

corrections coefficients, adjustments variables, and the use of the Blue band that 

represents atmospheric corrections and canopy background noise corrections 

(VERMONT et al., 2016). Also, the values for the coefficients and variables are G = 2.5, 

C1 = 6, C2 = 7.5 and L = 1.  The corresponding equation is presented below (Equation 2).  

EVI = G
𝑁𝐼𝑅 − Red

NIR + C1 ∗ Red − C2 ∗ Blue + L 
 (2) 

 

where: G is the gain factor, C1 and C2 are resistance atmospheric correction 

coefficients, and L is the adjustment for the canopy background. 

 

The SAVI vegetation index (Equation 3) reduced the soil brightness influence in 

low-cover vegetation areas. This correction is represented by the coefficients: L = 0.5, as 

suggested by USGS (2019), to adhere to more land cover types. 

SAVI =
𝑁𝐼𝑅 − Red

NIR + Red + L 
∗ ( 1 + L) (3) 

 

where: L is the adjustment for the soil brightness correction factor. 

 

The scenarios combining the indices and Landsat OLI spectral bands are described 

in Table 3.   

Table 3: Experimental Scenarios 

Scenarios Bands 

I Spectral bands (2 to 7) 

II NDVI 

III EVI 

IV SAVI 

V Scenario I and II 

VI Scenario I and III 
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VII Scenario I and IV 

VIII Scenario I to IV 

 

Image classification based on Machine Learning 

The dataset explained in the section “Image Dataset”, is composed of training and 

validation samples, where the polygons samples for training are in different locations than 

the validation samples. This differentiation is necessary to avoid an inducted result. The 

samples for the machine learning method were selected in the GEE platform using the 

satellite image. 

In GEE, we used Random Forest (RF) algorithm to perform the training and 

classification. The RF algorithm is a predictor tree set, where each tree has an independent 

random vector, and the information selection occurs by choosing the most popular class 

for determining data (BREIMAN, 2001). The platform provides a classifier pack, where 

RF was considered with the following configurations:  number of trees of 100 and 10 for 

the minimum size of a terminal node. According to the considerations of Breiman (2001) 

about the number of trees and some tests performed by Estrabis et al. (2019), we decided 

to adopt 100 trees for the RF classification. 

 

Validation 

In the validation process, we compared the classified data with the reference data, 

where it was possible to obtain values of agreements and disagreements, called the 

confusion matrix. This process was performed using QGIS software (QGIS Development 

Team, 2019), analyzing the confusion matrix and estimating the kappa indexes and 

accuracies. The kappa index proposed by Cohen (1960) is an evaluation of the degree of 

agreement of the classes, as shown in Equation (4). The interpretation of the agreement’s 

strength of the Kappa index was established as proposed by Landis and Koch (1977).  

Another validation metric is accuracy. The probability of a sample being correctly 

classified is called general accuracy (GA), estimated using Equation (5). The producer 

accuracy (PA), in Equation (6), shows how well an area can be mapped on the Earth and 

indirectly indicate the omission error.  The user accuracy (UA) in Equation 7 is associated 

with the reliability of the map and shows how well the map represents what something is 

on the land; indirectly, it indicates the commission errors (STORY; CONGALTON, 

1986). 
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𝐾 =
𝑃𝑜 − 𝑃𝑒

1 − 𝑃𝑒
 (4) 

Where: Po is the agreement proportions, and Pe is the agreement proportions 

expected by chance. 

𝐺𝐴 =
∑ 𝑐𝑠𝑎

𝑖=1

∑ 𝑟𝑠𝑎
𝑖=1

 (5) 

𝑃𝐴 =
𝑐𝑠

𝑟𝑠
 (6) 

𝑈𝐴 =
𝑐𝑠

𝑎𝑠
 (7) 

Where: “cs” is the number of correct samples, “rs” is the total number of reference 

samples, “a” is the total number of classes, and “as” is the total amount of samples 

classified in the class. 

The producer and user accuracy values indicate indirect commission and omission 

errors. Producer accuracy is associated with commission errors, where, according to 

Souza and Sampaio (2005), classes are mistakenly included in other classes during the 

classification. The user accuracy is related to omission errors, where classes are omitted 

or forgotten during the classification. 

 

RESULTS AND DISCUSSIONS 

All the classifications based on the scenarios were performed on GEE, and the 

maps of the classifications for each scenario are shown in Figure 3. The green color 

represents the native-vegetation areas, and the yellow color represents the non-native-

vegetation areas.  
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Figure 3: Comparison of the scenario maps. Scenario I: Landsat OLI bands, scenario II: 

NDVI, scenario III: EVI, scenario IV: SAVI, scenario V: NDVI + Landsat OLI bands, 

scenario VI: EVI + Landsat OLI bands, scenario VII: SAVI + Landsat OLI bands, 

scenario VIII: Lansat OLI bands + NDVI + EVI + SAVI. 

 
  

The confusion matrix was estimated in percentage, and the results are shown in 

Table 4. The diagonal represents the target or the agreements between classification and 

the validation (in bold), and the other values represent the confusion.  

Table 4: Scenarios Confusion Matrix 

 Reference 

Class 1 2 

C
la

ss
if

ie
d
 

Scenario I  
1 98.84 4.76 

2 1.16 95.24 

Scenario II  
1 97.47 12.11 

2 2.53 87.89 

Scenario III  
1 99.54 14.89 

2 0.46 85.12 

Scenario IV  
1 97.46 14.88 

2 2.54 85.12 

Scenario V  
1 98.85 4.78 

2 1.15 95.22 

Scenario VI 1 98.81 4.76 



 
576 

 

2 1.18 95.24 

Scenario VII 
1 98.82 4.74 

2 1.18 95.26 

Scenario VIII 
1 97.46 14.88 

2 2.54 85.12 

 

The classifications provided correctly at least 97% of native-vegetation classified 

as native-vegetation, and less than 3% as non-native-vegetation. The scenario III (EVI) 

presented the best result for class 1 – native vegetation. Although the values were around 

97%, the scenarios II, III, IV, and VIII presented the lowest agreement for class 2, non-

native vegetation. Regarding class 2, differences of around 10% occurred in non-native-

vegetation classification. The scenarios II, III, IV, and VIII presented classifications with 

more confusion among other scenarios, with almost 15% of confusion with the native-

vegetation class. In general, comparing the agreement results (Table 4) for all scenarios, 

scenario VIII generated the lowest results. The classification image from EVI obtained 

the highest agreements for the native-vegetation class and one of the lowest agreements 

for the non-native-vegetation class, comparing the results for the confusion matrix.  

In Table 5 is shown the values for the producer’s accuracy, user’s accuracy, and 

kappa index for each class in each scenario, and overall accuracy for each classification 

per scenario.  

Table 5: Classifications Accuracies and Kappa Index 

Scenario 
Producer’s 

Accuracy (%) 

User’s 

Accuracy (%) 
Kappa Hat 

 Class Class Class 

 1 2 1 2 1 2 

I 98.84 95.24 95.58 98.75 0.91 0.98 

II 97.47 87.89 89.34 97.09 0.78 0.94 

III 99.54 85.12 87.44 99.44 0.74 0.99 

IV 97.46 87.90 89.34 97.08 0.78 0.94 

V 98.85 95.22 95.56 98.75 0.91 0.98 

VI 98.81 95.24 95.58 98.72 0.91 0.97 

VII 98.82 95.26 95.59 98.73 0.91 0.98 

VIII 98.84 95.15 95.50 98.74 0.91 0.98 

 Overall Accuracy Kappa Index 

I 97.077 0.9415 

II 92.775 0.8552 

III 92.472 0.8489 

IV 92.774 0.8552 

V 97.069 0.9413 

VI 97.063 0.9412 



 
577 

 

VII 97.074 0.9414 

VIII 97.032 0.9406 

 

The classification for the scenario I presented accuracies of producer and user 

above 95%. These results showed a good mapping of the classes (producer’s accuracy) 

and reliability, achieving almost 100% for all classes. Also, these values indicated 

commission and omission errors of less than 5%. The kappa hat achieved agreements 

above 0.90, reaching almost 1 for class 2, considered almost perfect agreement. 

The scenario II represents a classification using the NDVI. The results for this 

scenario showed agreements with a slight reduction compared to scenario I in the 

producer’s accuracy for class 1 and the user’s accuracy for class 2, a reduction of 7.35% 

for class 2 in the producer’s accuracy, and 11.34% for class 1 for user’s accuracy. It is 

possible to observe an increase in confusion in non-native vegetation classification, 

classified as native vegetation, which indirectly indicates an increase in omission errors 

for class 2. Also, the reduction of class 1 in user’s accuracy increased the commission 

errors and the reduction in mapping reliability indirectly. The kappa hat for class 1 was 

reduced compared with scenario I, considered as substantial agreements and almost 

perfect agreements for class 2. 

The EVI classification, scenario III, presented the highest result for the producer’s 

accuracy for class 1 and class 2 in the user’s accuracy. However, this classification 

obtained the lowest result for the class 2 producer’s accuracy and class 1 in the user’s 

accuracy. These observations indicate that the classification provided well detection of 

the native-vegetation class, however, with lower reliability. For class 2, although the 

classification provides higher reliability, it did not represent so well what it is on Earth. 

The kappa hat resulted in the lowest value for native-vegetation among, considered as 

substantial agreements and almost perfect agreements for non-native-vegetation.  

The SAVI classification, scenario IV, performed similarly to scenario II. The 

producer’s accuracies showed better classification of the native-vegetation class than the 

non-native vegetation class, and the user’s accuracy demonstrated better reliability for 

class 2 compared to class 1. The values indicated more omission errors for class 2, around 

12.1%, and less than 3% for class 1. Also, the commission errors were higher for class 1, 

reaching 10.66%, and less than 3% for class 2. The kappa hat indicated more 

disagreement for class 1 and more agreement for class 2, considered “substantial 

agreements” and “almost perfect agreements”, respectively.  
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The combinations between the vegetation indices and Landsat bands improve the 

classifications by only using the vegetation indexes. The scenario V obtained a 

considerable increase, around 5%, in the producer’s accuracy for class 2 and an increase 

in the user’s accuracy for class 1, representing greater class identification and mapping 

reliability. The kappa hat showed more agreements for class 1 than only the NDVI 

classification. Also, these improvements can be observed in scenario VII, with results 

similar to scenario V and the same kappa hat values. However, in scenario VI, occurred 

a slight reduction in the producer’s accuracy for class 1 and the user’s accuracy for class 

2. Also, in scenario VI were observed considerable improvements for other accuracies, 

around 10%, generating better classification reliability. The kappa hat performed with a 

similar result, all values above 0.97 for class 2 and 0.91 for class 1, were considered 

“almost perfect agreements”. 

The scenario VIII, performed with the combination of all scenarios, generated 

results similar to scenario I (without the vegetation indices). These values indicated that 

using all vegetation indices associated with Landsat bands did not significantly improve 

the classification performed in the scenario I (only Landsat bands). Also, the results were 

similar to the classifications where the vegetation indices were included with the Landsat 

bands for each vegetation index (scenarios V, VI, and VII), resulting in similar values. 

The producer’s and user’s accuracies maintained a good classification of what is and 

mapping reliability above 95%. The kappa hat indicated “almost perfect agreements” for 

both classes, with confusion under 1%. 

The vegetation indices images are shown in Figure 4, where it is possible to 

observe how the different elements are identified in the vegetation indices evaluated in 

this study. Class 2 was specified in different samples that constitute the classes water, 

pasture areas, agriculture, urban, and silviculture areas. 

 Different from the other vegetation indices (NDVI and SAVI), the water in EVI 

classification presented as a class that has clearly vegetation in its composition. It can be 

occurred because of the presence of eutrophication in the sample collected from water 

bodies, as we can see in 4.c.EVI. 
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Figure 4: Samples and vegetation indices visualization 
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This interpretation occurred with EVI, presented in 4.c, of eutrophic waters, which 

changed the perception of the water to something with vegetation. However, although for 

the other indices, this water sample was identified as a different element of vegetation. 

The atmospheric corrections performed by the calculation of EVI could turn more real 

the identification of the presence of vegetation in diverse areas, in other words, more 

sensible to vegetation presence, however, can increase the probability of any confusion 

of the algorithm classifier. The urban and pasture areas samples are presented in 

vegetation indices as light green or near-white color, visually different from native 

vegetation, silviculture, or agriculture samples.  

Figure 5: Scenarios comparison 

 

 

All scenarios results are presented in Figure 5. The classification only considering 

vegetation indices generated results slightly different among them. An area (in red circle) 

was identified where different results were obtained. Visually on Landsat images, this 

specific area has coloration greener than other areas, e.g., pasture areas, and this 

characteristic could influence the vegetation indices generation, which has the aim to 

highlight the vegetation and improve its detection. Then, when it was highlighted by the 

vegetation indices, the RF algorithm classified it as native vegetation and not as non-

native vegetation (e.g., pasture areas).  

The balance among the classification was observed when these vegetation indices 

were associated with Landsat bands, reducing the confusion. One of the reasons for this 
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improvement could be that the RF algorithm can decide better when all sets of other 

spectral bands are used than only the vegetation indices. Consequently, a better 

classification was achieved. Also, the presence of the other elements with vegetation in 

their composition could contribute to the confusion of the classifier.  

Finally, the validation results indicated the scenario I was the best scenario for the 

native vegetation mapping using Landsat 8 OLI bands 2 to 7. The map of the Cerrado 

native vegetation in the first semester of 2019 in Mato Grosso do Sul state is presented in 

Figure 6. 

Figure 6: Cerrado Native Vegetation Mapping in Mato Grosso do Sul 

 

 

The mapping results indicated that the Cerrado native vegetation in Mato Grosso 

do Sul covered 5,793,122 ha, and the non-native vegetation corresponded to 15,847,258 

ha. The total area mapped was 21,640,380 ha, demonstrating that the presence of the 

Cerrado biome in this state for 2019 was 26,80%.  

 

CONCLUSIONS 

The GEE can generate native vegetation mapping with high accuracies using only 

Landsat spectral bands or NDVI, EVI, and SAVI, and in addition, these bands combined 
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with each other. The applications of vegetation indices and spectral bands from Landsat 

8 in different scenarios indicate that the use of bands 2 to 7 from Landsat 8 OLI provides 

the best classification of Cerrado Native Vegetation mapping. Classifications using only 

vegetation indices present more confusion, reducing the reliability of the native 

vegetation mapping. The EVI classification is sensitive for eutrophic water sources 

inducing a wrong classification as dense vegetation, and pasture areas can classify as 

dense vegetation. 

In Mato Grosso do Sul, the presence of the Cerrado Native Vegetation mapping 

for the first semester of 2019 was 5,793,122 ha, representing 26,80% of this biome area 

in this state. 
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