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RESUMO 

A aplicação de técnicas Bayesianas tem se tronado comum em bioengenharia, é comum realizar inferências 

sobre parâmetros e variáveis de estado que não podem ser mensurados. Este trabalho tem como objetivo 

aplicar a técnica de Aproximação Bayesiana Computacional para estimar parâmetros e selecionar modelos 

simultaneamente nos modelos que descreve a dinâmica de células importantes que representam o HIV. Três 

diferentes modelos dinâmicos foram usados para avaliar a verificação do algoritmo, esta verificação foi 

realizada com medidas simuladas. A técnica foi verificada e se mostrou ser robusta o suficiente para estimar 

parâmetros e selecionar o melhor modelo simultaneamente e por isso, esta se mostra ser uma técnica 

promissora.  
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ABSTRACT 

The application of Bayesian techniques is becoming common in bioengineering, as it is common to infer 

inferences about parameters and state variables that cannot be measured. This work aims to apply the 

Approximate Bayesian Computational technique to estimate parameters and select models simultaneously 

in models that describe the dynamic of important cells representing the HIV disease. Three different 

dynamic models were used to perform the algorithm’s verification since the technique was used regarding 

synthetic measures. It was verified that the technique is robust enough to estimate and select the models 

studied simultaneously and this way showed be a promise technique for this objective. 

Keywords: Bayesian technique; Approximate Bayesian Computational; HIV. 
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INTRODUCTION 

 

Acquired Immunodeficiency Syndrome (AIDS) is characterized by profound 

immunodeficiency, leading to opportunistic infections, secondary neoplasms, and 

neurological manifestations (Patil, 2014; Valerio et al, 2021). Although this syndrome 

has been the subject of research for a long time, much remains to be discovered. The 

difficulty of understanding the syndrome causes research to become multidisciplinary due 

several technologies must be developed to understand many processes related to dynamic 

of HIV. In a particular characteristic in this field is similar in many issues present in 

engineering research, which are the acknowledgment of parameters for to solve the 

mathematical formulations. In engineering is common use the classical statistics to 

determine the parameters, and the technique widely used is Least-Square. Other field 

from statistics that is becoming common apply to estimate parameters is the Bayesian 

Statistics, as well as the classical statistics several issues from the engineering was solved 

by techniques from Bayesian Statistics as can see example of such application in a 

adsorption, combustion, neurology, mass transfer, heat transfer. 

In the classical statistics, several research types focus on the methodology for the 

solution of formulations of HIV dynamics and parameter estimates (Perelson, Kirscchner, 

De Boer, 1993; Wu, Ding, De Gruttola, 1998; Perelson and Nelson, 1999; Putter et al., 

2002; Xia, 2003; Adams et al., 2007; Srivastava, Awasthi, Kumar, 2014).  However, the 

application of the Approximate Bayesian Computational (ABC) has not yet been 

explored. This algorithm has the characteristic of estimating parameters and selecting 

models simultaneously. Such estimates are important due to selecting the best model, 

which has the consequence of determining which is the best hypothesis to describe the 

experimental data. Besides, the estimation of the parameters allows inferences to be made 

as to which measures cannot be obtained directly (Toni et al., 2009; Toni and Stumpf, 

2009; Toni and Stumpf, 2010; Santos et al., 2020a; Santos et al., 2020b). 

Therefore, this work aims to evaluate the application of the ABC technique 

through the use of 3 different models that describe the cell dynamics that characterize the 

HIV syndrome previously described by Perelson and Nelson (Perelson and Nelson, 1999) 

and Perelson et al. (Perelson, Kirscchner, De Boer, 1993). These models are based on 

different hypothesis. The procedure of estimate parameters and select the model is 

interesting to identify the main phenomenon involved through mathematical modeling 
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and estimating information that are not measured. In this work, to evaluate the application 

of Approximate Bayesian Computational in these models were used simulated regarding 

uncertainties as normal distribution, uncorrelated and independent. Besides the novelty 

of apply the ABC technique in dynamic of HIV models, in this work was evaluated a 

strategy to determine the tolerance for each population based on the previous particles 

accepted in the previous population, this way optimizing the algorithm, once the present 

in the literature is necessary define the quantity of population and the tolerance in each 

population. 

 

2. HIV DYNAMIC MODELS 

 

Models that represent the dynamics of HIV are commonly found in the literature 

and for different scenarios. In this work, we chose to use 3 similar models that present as 

populations variables of uninfected CD4+ T cells (T), latently infected CD4+ T cells (T*), 

productively infected cells (T**), and free virus (V). The models that were used in this 

research are presented below. 

 

2.1 Model 1- Perelson and Nelson (Perelson and Nelson, 1999)  

In this first model, in the balance of healthy cells, T, it is assumed that Timo 

produces healthy cells, T, at a rate, s, and each cell created by Timo reproduces pT healthy 

cells. In contrast, a death rate is considered of healthy cells equal to dTT, in addition to 

this rate of death of healthy cells, it is considered that there is a k1VT infection rate that 

reduces the population of healthy cells. 

The balance of infected cells, T*, is obtained by balancing cells infected by the 

action of free viruses at a k1VT rate and infected cells converted to free viruses at a δT* 

rate. 

The balance of free virus, V, is performed by accounting for increasing this type 

of cell at a rate δT* and death at a rate cV. The balance of healthy, infected, and viral 

cells are presented qualitatively in Figure 1, and the mathematical model for this first 

model is presented in eqs. (1-3). 

 

 

1T

dT
s d T pT k VT

dt
= − + −

 
(1) 
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*
*

1

dT
k VT T

dt
= −

 
(2) 

*dV
T cV

dt
= −

 
(3) 

 

 
 

Figure. 1. Balance of cells, healthy, infected, and viral used in model 1. 

 

 

 

2.2 Model 2 – Perelson et al. (Perelson, Kirscchner, De Boer, 1993)  

 

The second model to be analyzed has status variables healthy cells, T, infected 

cells, T*, latently infected cells, T**, and free viruses, V. 

In this model, the balance of healthy cells, T, is performed by accounting for 

healthy cells produced by Timo at a rate s. Each cell produced by Timo reproduces at a 

rate, pTf (T, T*, T**), which depends on the populations of healthy, infected, latently 

infected cells and free virus. While similar to model 1, the healthy cell population was 

considered to have two types of death rates: dTT and those infected at a k1VT rate. 

The balance of infected cells, T*, is performed when considering that the k1VT 

rate represents their production. In contrast, two death rates of infected cells, dTT* are 

considered and transformed into latent infected at the K2T* rate. 

The balance of latently infected cells is obtained by considering that these cells 

are produced at the rate K2T *, while the death rate of these cells is considered δT**. 

V's balance for free viruses differs from model 1, as it considers that each latently 

infected cell generates N viral cells. Therefore, the rate of production of viral cells is 

NδT** while the rate of death is represented by cV. The balance of healthy, infected, 
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latently infected, and viral cells are presented qualitatively in Figure 2, and the 

mathematical model for this model is presented in eqs. (4-7). 

* **

1

max

1T

dT T T T
s d T pT k VT

dt T

 + +
= − + − − 

   
(4) 

*
* *

1 2T

dT
k VT d T k T

dt
= − −

 
(5) 

**
* **

2

dT
k T T

dt
= −

 
(6) 

**

1

dV
N T k VT cV

dt
= − −

 
(7) 

 

Figure. 2. Balance of cells, healthy, infected, latently infected, and viral used in 

model 2. 

 

 

 

2.3 Model 3 – Perelson et al. (Perelson, Kirscchner, De Boer, 1993)   

 

Model 3 is similar to model 1, and the differences are only in the equations to 

represent the dynamics of healthy and viral cells. While in model 1, there is a production 

rate pT, in this model, this rate is represented by a logistic function that causes this 

population to have saturation in Tmax cells. Regarding viral cells, the difference is that in 

this model, replication of infected cells is considered. The balance of healthy, infected, 

latently infected, and viral cells are presented qualitatively in Figure 3, and the 

mathematical model for this model is presented in eqs. (8-10). 

1

max

1T

dT T
s d T pT k VT

dt T

 
= − + − − 

   
(8) 

*
*

1

dT
k VT T

dt
= −

 
(9) 
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*dV
N T cV

dt
= −

 
(10) 

 

Figure. 3. Balance of cells, healthy, infected and viral used in model 3. 

 

The reference parameters and the initial conditions used in the eqs. (1-10) are 

shown in Tables 1 and 2, respectively. 

Table 1. Reference parameters. 

Parameters Value Unit 

s 10 day-1 x mm-3 

p 0.03 day-1 

Tmax 1500 mm-3 

dT 0.02 day-1 

δ 0.24 day-1 

c 2.4 day-1 

k1 
2.4 x 

10-5 
mm3 x day-1 

k2 
3.0 x 

10-3 
day-1 

N 1400 Dimensionless 

 

Table 2. Initial conditions. 

State variable Value Unit 

T(0) 103 mm-3 

T*(0) 0 mm-3 

T**(0) 0 mm-3 

V(0) 10-3 mm-3 
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3. APPROXIMATE BAYESIAN COMPUTATIONAL 

 

There are difficulties in obtaining direct measures in several research areas, both 

for parameters and state variables (Beck and Arnold 1977; Orlande et al., 2011; Kaipio 

and Somersalo, 2002; Oliveira et al., 2020; Pasqualette et al., 2017). In this scenario, 

several Bayesian Techniques can be applied to make inferences about the unknown 

information. In addition to the estimation of parameters, in certain surveys, there are 

several models to represent a given experimental data, so there is a need also to assess 

which models make the best inference. There are several Bayesian statistical metrics for 

comparing models, for example, Akaike, Corrected Akaike, BIC, DIC, TIC (Schwarz, 

1978; Konish and Kitagawa, 2008). 

Bayesian techniques are based on Bayes' theorem (Schwarz, 1978; Nunes at al., 

2021; Moura et al., 2021).  However, in such a theorem, it is necessary to model the 

likelihood equation. However, in several studies, it is not possible to perform repeatability 

and, therefore, it is impossible to define the likelihood equation (Beaumont, Zhang and 

Balding, 2002; Marjoram et al., 2003; Beaumont et al., 2009). 

The Bayesian Computational Approximation technique does not require the 

modeling of the likelihood function. It uses another statistical metric to determine whether 

a sample of models and parameters is accepted or rejected in the algorithm's iterative 

process. 

In this work, the algorithm proposed was an extension of the proposed by Toni et 

al. (Toni et al., 2009) was based. The adaptations made were in how to determine the 

tolerance of each population based on the previous population, and for the stopping 

criterion, the Morozov (1966) principle of discrepancy was adopted (Toni et al., 2009; 

Toni and Stumpf, 2010; Toni and Stumpf, 2009; Beaumont, Zhang and Balding, 2002; 

Toni, 2010). The algorithm used is presented: 

1. Start regarding free tolerance and define the uncertainties of measurement 
meas
pop

 

as: 

1

tN

meas
pop i

i

 

=

=
 

where i  is the uncertainty in each time; 

2. Define the index to population 0pop = ; 

3. Define index to particle 1i = ; 
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4. Sort a model 
*m  from the probability prior distribution ( )m

. If 1pop = , sort 
**
θ  

that is from the model 
*m sorted in the step 4 ( )| m θ

. If 1pop  , sort 
*
θ  from the previous 

population 
( )*

1pop
m

−

 
 
 
θ

 regarding weight 
( )*

1pop
w m

−  and perturb the particle 
*
θ  to obtain 

( )** *~ |popKθ θ θ
; 

5. If 
( )** 0 =θ

, go back for step 4; 

6. Simulate a candidate data 
( )* ** *~ | ,  mY Yθ

. Calculate the tolerance based on the 

samples of distance accepted in the previous population, 
1poppop D −=
. If 

( )*, exp
popd Y Y

, go 

back to step 4; 

7. Define 
( ) *i
popm m=

 and generate 
**
θ  from the actual population 

( )*

pop
m

 
 
 
θ

 and 

calculate the weight of particle 
**
θ , 

( ) ( )
( ) ( )

**

1 1
1

                         1                                                                1,

,                      if   1  

,

i
pop

N i ij
popp popop pop

J

if pop

w
pop

w K



− −
=

=



=  
  
  

  

θ

θ θ

; 

8. If i N , define 1i i= +  and go back to step 4; 

9. For each model m , normalize the weight of accepted particle; 

10. If pop T , define 1pop pop= +  and go back for step 3; 

11. Define 
mod
pop

 as the uncertainties from the estimations of the model: 

mod

1

tN

mod
pop i

i

 

=

=
; 

12. If 
mod med
pop pop 

 go back for step 3. Otherwise, stop. 

 

 

4. RESULTS AND DISCUSSION 

 

The results will be discussed in two stages. Initially, the reduced sensitivity 

coefficients for the three models were analyzed, and then the parameter estimates 

obtained with the different strategies to define the tolerance are discussed. In all cases 
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analyzed, uncertainty levels of 5% max (YExact) were considered, a priori probability 

distribution of the parameters being uniform ( ~ [0   2 ]exactU θ ) and 500 particles. 

 

4.1 Reduced sensitivity coefficient 

The sensitivity coefficients analysis is essential to obtain precision and accuracy 

in the estimates (Ozisik and Orlande, 2000). In this analysis, the parameters to be 

estimated must have a considerable magnitude concerning the state variables measured 

and linearly independent. Figures 4-6 show the reduced sensitivity coefficients for the 

three models analyzed. 

Figure. 4. Sensitivity coefficient of model 1 in relation to the state variables: (a) 

T, (b) T*, and (c) V. 
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Figure. 5. Sensitivity coefficient of model 2 in relation to the state variables: (a) 

T, (b) T*, and (c) V. 

 

Figure. 6. Sensitivity coefficient of model 3 in relation to the state variables: (a) 

T, (b) T*, and (c) V. 

 

Figures 4-6 that there are reduced sensitivity coefficients that do not present 

considerable magnitude for the three models, as well as there is linear dependence. Table 

3 summarizes these analyses. There are no markers; it indicates that such reduced 

sensitivity coefficient does not present considerable magnitude in relation to the measured 

state variable. The same symbols mean that the reduced sensitivity coefficients are 

linearly dependent. 

 

Table 3. Analysis of reduced sensitivity coefficients considerable magnitude in 

relation to the measured state variable. The same symbols mean that the reduced 

sensitivity coefficients are linearly dependent. 

 

θ  
Model 1 Model 2 Model 3 

T T* V T T* V T T* V 

Tmax    XX XX XX XXX XXX XXX 

N    XX XX XX XXX OOO OOO 

s O O O XX XX XX XXX XXX XXX 

p X X X XX XX XX XXX XXX XXX 

dT X X X XX XX XX XXX XXX XXX 

δ O O O OO OO OO OOO OOO XXX 

c O O O XX XX XX OOO OOO XXX 

k1 + X O XX XX XX OOO OOO XXX 

k2    XX XX XX  XXX XXX 
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When analyzing Table 3, it is concluded that the following parameters should be 

estimated for the three models analyzed: 
 1    s p k=M1

T
P

, 
   N =M2

T
P

 and  max 1    kT N=T
M3P . 

 

4.2 Parameter Estimation and Model Selection - ABC 

Parameter estimates and model selection were performed using the Computational 

Bayesian Approximation technique. An important metric of this method is the definition 

of the values of the tolerances since this metric is the borderline value (when comparing 

with the Euclidean distance between the experimental and simulated data) to accept a 

specific sample of models and parameters. In this work, the tolerance at population (pop) 

is calculated regarding the mean of the distance related to particles accepted in the 

previous population. 

Initially, the results obtained generating a simulated measure with model 1 and 

using strategy 1 will be presented since generating a measure with the other models is 

similar. The selection of models with the evolution of populations is shown in Figure 7. 

 

Figure. 7. Model selection when generating measurements with model 1 and 

using strategy 1. 
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When analyzing Figure 7, it appears that in the first population, the three models 

are equiprobable. It is because it was used as an a priori equiprobable probability 

distribution for the models. 

The three models have a non-zero probability until the third population. In the 

fourth population, model 3 already has zero probability. Only models 1 and 2 remain in 

the dispute to better represent the data. However, in the fifth population, the algorithm 

already determines that the best model to represent the measurements is model 1. 

However, although the algorithm has already selected the best model, 15 populations 

were needed for each the adopted stop criterion. It was still necessary to reduce the 

uncertainties associated with the parameters. Figures 8-10 show the reduction of 

uncertainties associated with the parameters k1, s, and p with the populations' advance; 

one can verify estimates with precision and accuracy compared with the reference 

parameters (Table 1). 

 

Figure. 8. Estimation of k1 of model 1. 
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Figure. 9. Estimation of s of model 1. 
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Figure. 10. Estimation of p of model 1. 

 

 

 

After analyzing the model selection and parameter estimates, Figures 11-13 show 

the comparisons of the measured, estimated, and exact state variables (T, T*, and V). It 

can be seen in Figures 11-12 that in all state variables, in the first population, the estimates 

do not satisfactorily represent the measures. However, with the advancement of 

populations, the parameters' uncertainty is reduced and, consequently, the estimates of 

the state variables are improved. 
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Figure. 11. Comparisons of the measured, estimated, and exact state variables (T). 

 

 

Figure. 12. Comparisons of the measured, estimated, and exact state variables 

(T*). 

 

 



 
1863 

 

Figure. 13. Comparisons of the measured, estimated, and exact state variables 

(V). 

 

 

 

5. CONCLUSIONS 

 

The use of the Bayesian computational technique proved to be an up-and-coming 

technique for estimating parameters and selecting models simultaneously. 

Initially, a study was carried out in relation to the analysis of the reduced 

sensitivity coefficients showed that for the three models analyzed it would be possible to 

estimate the following parameters simultaneously: 
 1    s p k=M1

T
P

, 
   N =M2

T
P

 and 

 max 1    kT N=T
M3P

. 

The estimates of the parameters of model 1 were obtained with precision and 

accuracy. Using simulated measures, it was possible to compare with the reference 

parameters and prove the algorithm's robustness. In addition to the parameter estimates, 

excellent T, T *, and V estimates were obtained. 
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