Summary of the role of pyocyanin in the transformation and biodegradation of Polycyclic Aromatic Hydrocarbons

Autores

  • Luiz Gustavo Pragana Universidade Federal da Paraíba
  • Carlos Eduardo Tavares Norat Universidade Federal da Paraíba
  • Diogo Simas Bernardes Dias Universidade Federal do Rio de Janeiro
  • Elisângela Afonso de Moura Kretzschmar Universidade Federal da Paraíba
  • Rafael de Almeida Travassos Universidade Federal da Paraíba
  • Ulrich Vasconcelos Universidade Federal da Paraíba

DOI:

https://doi.org/10.53660/CONJ-1874-2P12

Palavras-chave:

Biodegradação, Pseudomonas aeruginosa, Quorum sensor, Compostos redox ativos

Resumo

A piocianina é uma fenazina redox ativa de cor azul intensa, específica da Pseudomonas aeruginosa e a síntese da molécula confere diferentes benefícios à bactéria. A piocianina pode controlar seu crescimento e persistência em ambientes com altas pressões nutricionais, formando biofilmes. Além disso, a síntese de piocianina permite que a bactéria tolere e absorva compostos altamente tóxicos, como os hidrocarbonetos aromáticos policíclicos (HPA), considerados os compostos mais perigosos entre todas as moléculas presentes no petróleo bruto e petroderivados. Além disso, a piocianina aumenta a biodisponibilidade dos HPA e seus metabólitos, usados ​​para sintetizar moléculas cruciais para a biodegradação de outros HPA. Por outro lado, hidrocarbonetos de petróleo podem servir como vetores de oxigênio durante a síntese de piocianina, contribuindo para a sustentabilidade do processo de biodegradação. Esta revisão é uma compilação dos avanços recentes relatados na literatura sobre a relação entre a expressão de piocianina e a atividade hidrocarbonoclástica de P. aeruginosa. Essa característica nas linhagens piocianina-deficientes é importante para a degradação de HPA, um tema ainda pouco estudado.

Downloads

Não há dados estatísticos.

Referências

AGRAWAL, A.H.; CHAUHAN, P.B. Effect of cultivation media components on pyocyanin production and its application in antimicrobial property. Int J Curr Adv Res. v. 5, n. 4, p. 829–833, 2016.

ALEGBELEYE, O.O.; OPEOLU, B.O.; JACKSON, V.A. Polycyclic aromatic hydrocarbons: a critical review of environmental occurrence and bioremediation. Environ Manag. v. 60, n. 4, p. 758-783, 2017.

ALLEN, L.; DOCKRELL, D.H.; PATTERY, T.; LEE, D.G.; CORNELIS, P.; HELLEWELL, P.G.; WHYTE, M.K.B. Pyocyanin production by Pseudomonas aeruginosa induces neutrophil apoptosis and impairs neutrophil-mediated host defenses in vivo. J Immunol. v. 174, n. 6, p. 3643-3649, 2005. doi: 10.4049/jimmunol.174.6.3643.

AMER, R.A.; MAPELLI, F.; EL GENDI, H.M.; BARBATO, M.; GODA, D.A.; CORSINI, A.; CAVALCA, L.; FUSI, M.; BORIN, S.; DAFFONCHIO, D.; ABDEL-FATTAH, Y.R. Bacterial diversity and bioremediation potential of the highly contaminated marine sediments at El-Max District (Egypt, Mediterranean sea). BioMed Res Int. v. 2015, p. 981829, 2015. doi: 10.1155/2015/981829.

AMLY, D.A.; HAJARDHINI, P.; JONARTA, A.L.; YULIANTO, H.D.K.; SUSILOWATI, H. Enhancement of pyocyanin production by subinhibitory concentration of royal jelly in Pseudomonas aeruginosa. F1000 Res. v. 10, p. 14, 2021. doi: 10.12688/f1000research.27915.4.

ARORA, P.K.; KUMAR, M.; CHAUHAN, A.; RAGHAVA, G.P.S.; JAIN, R.K. OxDBase: a database of oxygenases involved in biodegradation. BMC Res Notes. v. 2, p. 67, 2009. doi: 10.1186/1756-0500-2-67.

ARRUDA, R.R.A.; OLIVEIRA, B.T.M.; BONIFÁCIO, T.T.C.; MORAIS, V.C.; AMARAL, I.P.G.; VASCONCELOS, U. Activity of two exometabolites produced by Escherichia coli on the synthesis of pyocyanin. Int J Adv Eng Res Sci. v. 6, p. 267–271, 2019.

ASHOK, A.; HØJ, L.; BRINKMAN, D.L.; NEGRI, A.P.; AGUSTI, S. Food-chain length determines the level of phenanthrene bioaccumulation in corals. Environ Pollut. v. 297, p. 118789, 2022. doi: /10.1016/j.envpol.2022.118789.

ASHOUR, E.A.; FARSI, R.M.; ALAIDAROOS, B.A.; ABDEL-MONEIM, A-M. E.; EL-SAADONY, M.T.; OSMAN, A.O.; SAYED-AHMED, E.T.A.; ALBAQAMI, N.M.; SHAFI, M.E.; TAHA, A.E.; EL-HACK, M.E.A. Impacts of dietary supplementation of pyocyanin powder on growth performance, carcase traits, blood chemistry, meat quality and gut microbial activity of broilers. Ital J Anim Sci. v. 20, n. 1, p. 1357–1372, 2021. doi: 10.1080/1828051X.2021.1924087.

BABUPONNUSAMI, A.; MUTHUKUMAR, K. A review on Fenton and improvements to the Fenton process for wastewater treatment. J Environ Chem Eng. v. 2, n. 1, p. 557-572, 2014.

BAHARI, S.; ZEIGHAMI, H.; MIRSHAHABI, H.; ROUDASHTI, S.; HAGHI, F. Inhibition of Pseudomonas aeruginosa quorum sensing by subinhibitory concentrations of curcumin with gentamicin and azithromycin. J Glob Antimicrob Resist. v. 10, p. 21-28, 2017.

BELHAJ, A.; DESNOUES, N.; ELMERICH, C. Alkane biodegradation in Pseudomonas aeruginosa strains isolated from a polluted zone: identification of alkB and alkB-related genes. Res Microbiol. v. 153, n. 6, p. 339–344, 2002. doi:10.1016/s0923-2508(02)01333-5.

BELLES, A.; ALARY, C.; MAMINDY-PAJANY, Y.; ABRIAK, N.E. Relationship between the water-exchangeable fraction of PAH and the organic matter composition of sediments. Environ Pollut. v. 219, p. 512-518, 2016.

BENEDEK, T.; VAJNA, B.; TÁNCSICS, A.; MÁRIALIGETI, K.; LÁNYI, S.; MÁTHÉ, I. Remarkable impact of PAHs and TPHs on the richness and diversity of bacterial species in surface soils exposed to long-term hydrocarbon pollution. World J Microbiol Biotechnol. v. 29, n. 11, p. 1989-2002, 2013.

BEZZA, F.A.; CHIRWA, E.M.N. Biosurfactant-enhanced bioremediation of aged polycyclic aromatic hydrocarbons (PAHs) in creosote contaminated soil. Chemosphere. v. 144, p. 635-644, 2016.

BIESSY, A.; FILION, M. Phenazines in plant‐beneficial Pseudomonas spp.: Biosynthesis, regulation, function and genomics. Environ Microbiol. v. 20, n. 11, p. 3905-3917, 2018.

BLACK, B.C. Crude reality: Petroleum in world history (exploring world history). 2nd ed. Lanham-MA: Rowman & Littlefield Publishers, 304p, 2020.

BOJES, H.K.; POPE, P.G. Characterization of EPA’s 16 priority pollutant polycyclic aromatic hydrocarbons (PAHs) in tank bottom solids and associated contaminated soils at an exploration and production sites in Texas. Regul Toxicol Pharmacol. v. 47, n. 3, p. 288-295, 2007.

BOUCHEZ, M. ; BLANCHET, D. ; VANDECASTEELE, J.P. Degradation of polycyclic aromatic hydrocarbons by pure strains and by defined strain associations: inhibition phenomena and cometabolism. Appl Microbiol Biotechnol. v. 43, n. 1, p. 156-164, 1995.

BRITIGAN, B.E.; ROEDER, T.L.; RASMUSSEN, G.T.; SHASBY, D.M.; McCORMICK, M.L.; COX CD. Interaction of the Pseudomonas aeruginosa secretory products pyocyanin and pyochelin generates hydroxyl radical and causes synergistic damage to endothelial cells: Implications for Pseudomonas-associated tissue injury. J Clin Invest. v. 90, n. 6, p. 2187-2196, 1992.

CAI, Q-Y. ; MO, C-H. ; WU, Q-T. ; ZENG, Q-Y. ; KATSOYIANNIS, A. Bioremediation of polycyclic aromatic hydrocarbons contaminated sewage sludge by different composing process. J Harzard Mater. v. 142, n. 1-2, p. 535-542, 2007.

CASTAÑEDA-TAMEZ, P.; RAMÍREZ-PERIS, J.; PÉREZ-VELÁZQUEZ, J.; KUTTLER, C.; JALALIMANESH, A.; SAUCEDO-MORA, M.A.; JIMÉNEZ-CORTÉS, J.G.; MAEDA, T.; GONZÁLEZ, Y.; TOMÁS, M.; WOOD, T.K.; GARCÍA-CONTRERAS, R. Pyocyanin restricts social cheating in Pseudomonas aeruginosa. Front Microbiol. v. 9, p. 01348, 2018. doi: 10.3389/fmicb.2018.01348.

CEBRON, A. ; NORINI, M-P. ; BEGUIRISTAIN, T. ; LEYVAL, C. Real-time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHDα) genes from Gra-m positive and Gram negative bacteria in soil and sediment samples. J Microb Methods. v. 73, n. 2, p. 148-159, 2008.

CHEBBI, A.; ENTATI, D.; ZAGHDEN, H.; BACCAR, N.; REZGUI, F.; CHALBI, M.; CHAMKHA, M. Polycyclic aromatic hydrocarbon degradation and biosurfactant production by a newly isolated Pseudomonas sp. strain from used motor oil-contaminated soil. Int Biodeter Biodegrad. v. 122, p. 128-140, 2017.

CHIEDA, Y.; IIYAMA, K.; LEE, J.M.; KUSAKABE, T.; YASUNAGA-AOKI, C.; SHIMIZU, S. Inactivation of pyocyanin synthesis genes has no effect on the virulence of Pseudomonas aeruginosa PAO1toward the silkworm, Bombyxmori mori. FEMS Microbiol Lett. v. 278, p. 101-107, 2007.

CIOFU, O.; TOLKER-NIELSEN, T. Tolerance and resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents—how P. aeruginosa can escape antibiotics. Front Microbiol. v. 3, n. 10, p. 913, 2019. doi: 10.3389/fmicb.2019.00913.

COSTA, K.C.; BERGKESSEL, M.; SAUNDERS, S.; KORLACH, J.; NEWMAN, D.K. Enzymatic degradation of phenazines can generate energy and protect sensitive organisms from toxicity. mBio. v. 6, n. 6, p. e01520-15, doi: 10.1128/mBio.01520-15, 2015.

DAS, S.; DAS P. Effects of cultivation media components on biosurfactant and pigment production from Pseudomonas aeruginosa. Braz J Chem Eng. v. 32, n. 2, p. 317–324, 2015.

DAS, T.; IBUGO, A.I.; KLARE, W.; MANEFIELD, M. Role of pyocyanin and extracellular DNA in facilitating Pseudomonas aeruginosa biofilm formation. In: DHANASEKARAN, D.; THAJUDDIN, N. (Ed.). Microbial biofilms – importance and applications, London: ItechOpen, p. 23-42, 2016. doi: 10.5772/63497.

DAS, P.; MA L.Z. Pyocyanin pigment assisting biosurfactant-mediated hydrocarbon emulsification. Int Biodegrad Biodeterior. v. 85, p. 278-283, 2013. doi: 10.1016/j.ibiod.2013.07.013.

DELIGIANNI, E.; PATTISON, S.; BERRAR, D.; TERNAN, N.G.; HAYLOCK, R.W.; MOORE, J.E.; ELBORN, S.J.; DOOLEY, J.S.G. Pseudomonas aeruginosa cystic fibrosis isolates of similar RAPD genotype exhibit diversity in biofilm forming ability in vitro. BMC Microbiol. v. 10, p. 38, 2010. doi: 10.1186/1471-2180-10-38.

DEMANÈCHE, S. ; MEYER, C. ; MICOUD, J. ; LOUWAGIE, M. ; WILLISON, J.C. ; JOUANNEAU, Y. Identification and functional analysis of two aromatic-ring-hydroxylating dioxygenases from a Sphingomonas strain that degrades various polycyclic aromatic hydrocarbons. Appl Environ Microbiol. v. 70, n. 11, p. 6714-6725, 2004.

DWIVEDI, S. ; SINGH, B.R. ; AL-KHEDHAIRY, A.A.; MUSARRAT, J. Biodegradation of isoproturon using a novel Pseudomonas aeruginosa strain JS-11 as a multi-functional bioinoculant of environmental significance. J Hazard Mater. v. 185, n. 2-3, p. 938-944, 2011.

EMERENINI, B.O.; HENSE, B.A.; KUTTLER, C.; EBERL, H.J. A mathematical model of quorum sensing induced biofilm detachment. PLOS One. v. 10, p. e0132385, 2015. doi: 10.1371/journal.pone.0132385.

FEDERLE, M.J.; BASSLER, B.L. Interspecies communication in bacteria. J Clin Invest. v. 112, n. 9, p. 1291-1299, 2003.

FRIEDRICH, L.C.; ZANTA, C.L.P.; MACHULEK, A.; QUINA, F.H. Mechanistic study of the fenton and cupro-fenton reactions by voltammetric analysis in situ. Quím Nova. v. 40, n. 7, p. 769-773, 2017.

FRIMMERSDORF, E.; HORATZEK, S.; PELNIKEVICH, A.; WIEHLMANN, L.; SCHOMBURG, D. How Pseudomonas aeruginosa adapts to various environments: a metabolomic approach. Environ Microbiol. v. 12, n. 6, p. 1734-1747, 2010.

GALGANI, F. ; ELLERBRAKE, K. ; FRIES, E. ; GOREUX, C. Marine pollution: let us not forget beach sand. Environ Sci Europe. v. 23, n. 1, p. 40, 2011. doi: 10.1186/2190-4715-23-40.

GAO, P. ; DA SILVA, E.B. ; TOWNSEND, T. ; LIU, X. ; MA, L.Q. Emerging PAHs in urban soils: Concentrations, bioaccessibility, and spatial distribution. Sci Total Environ. v. 670, n. 6, p. 800-805, 2019.

GLASSER, N.R.; KERN, S.E.; NEWMAN, D.K. Phenazine redox cycling enhances anaerobic survival in Pseudomonas aeruginosa by facilitating generation of ATP and a protonmotive force. Molec Microbiol. v. 92, p. 399- 412, 2014.

GLASSER, N.R.; WANG, B.X.; HOY, J.A.; NEWMAN, D.K. The Pyruvate and α-ketoglutarate dehydrogenase complexes of Pseudomonas aeruginosa catalyze pyocyanin and phenazine-1-carboxylic acid reduction via the subunit dihydrolipoamide dehydrogenase. J Biol Chem. v. 292, n. 13, p. 5593-5607, 2017. doi: 10.1074/jbc.M116.772848.

GONÇALVES, T.; OLIVEIRA, B.T.M.; VASCONCELOS, U. Uso de piocianina no tingimento de fibra de algodão. Int J Develop Res. v. 11, n. 2, p. 44127-44134, 2021.

GONÇALVES, T.; VASCONCELOS, U. Colour me blue: the history and the biotechnological potential of pyocyanin. Molecules. v. 26, p. 927, 2021. doi: 10.3390/molecules26040927.

GOVAN, J.R.W. Pseudomonads and non-fermenters: Opportunist infection; cystic fibrosis; melioidosis. In: GREENWOOD, D.; SLACK, R.C.B.; BARER, M.R.; IRVING, W.L. (Ed.) Medical Microbiology. London: Churchill livingstone, p. 298–304, 2012, doi:10.1016/B978-0-7020-4089-4.00043-3.

GU, C.; WANG, J.; LIU, S.; LIU, G.; LU, H.; JIN, R. Biogenic Fenton-like reaction involvement in cometabolic degradation of tetrabromobisphenol a by Pseudomonas sp. Environ Sci Technol. v. 50, n. 18, p. 9981–9989, 2016.

GUPTE, A.; JYOT, J.; RAVI, M.; RAMPHAL, R. High pyocyanin production and non-motility of Pseudomonas aeruginosa isolates are correlated with septic shock or death in bacteremic patients. PlosOne. v. 16, n. 6, p. e0253259, 2021. doi:10.1371/journal.pone.0253259.

HARITASH, A.K.; KAUSHIK, C.P. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J hazard Mater. v. 169, n. 1-3, p. 1-15, 2009.

HUANG, Y. ; ZENG, Y. ; YU, Z. ; ZHANG, J. ; FENG, H. ; LIN, X. In silico and experimental methods revealed highly diverse bacteria with quorum sensing and aromatics biodegradation systems - A potential broad application on bioremediation. Bioresour Technol. v. 148, p. 311–316, 2013. doi:10.1016/j.biotech.2013.08.155.

IARC - INTERNATIONAL AGENCY FOR RESEARCH ON CANCER. IARC monographs on the evaluation of carcinogenic risks to humans. Available at: <http://monographs.iarc.fr/ENG/Classification/index.php>, acess 26 Jun 2022.

JACQUES, R.J.S.; SANTOS, E.C.; BENTO, F.M.; PERALBA, M.C.R.; SELBACHA, P.A.; SÁ, L.S.S.; CAMARGO, F.A.O. Anthracene biodegradation by Pseudomonas sp. isolated from a petrochemical sludge landfarming site. Int Biodegrad Biodeterior. v. 56, n. 3, p. 143-150, 2005.

JAYASEELAN, S.; RAMASWAMY, D.; DHARMARAJ, S. Pyocyanin: production, applications, challenges and new insights. World J Microbiol Biotechnol. v. 30, n. 4, p. 1159-1168, 2014.

JIMENES, P.N.; KOCK, G.; THOMPSON, J.A.; XAVIER, K.B.; COOL, R.H.; QUAX, W.J. The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol Molec Biol Rev. v. 76, n. 1, p. 46-65, 2012.

JO, J.; PRICE-WHELAN, A.; CORNELL, W.C.; DIETRICH, L.E. Interdependency of respiratory metabolism and phenazine-associated physiology in Pseudomonas aeruginosa PA14. J Bacteriol. v. 202, n. 4, p. e00700-19, 2020. doi: 10.1128/JB.00700-19.

JOHNSEN, A.R.; WICK, L.Y.; HARMS, H. Principles of microbial PAH-degradation in soil. Environ Pollut. v. 133, n. 1, p. 71-84, 2005.

JONES, A.M.; JAMES, I.I.; AKPAN, P.S.; EKA, I.I.; ORUK, A.E.; IBUOT, A.A. Characterization of hydrocarbon utilizing bacteria in waste engine oil-impacted sites. BioRxiv. v. 2020, p. 998872, 2020. doi: 10.1101/2020.03.21.998872.

KAHOUSH, M.; BEHARY, N.; CAYLA, A.; NIERSTRASZ, V. Bio-Fenton and Bio-electro-Fenton as sustainable methods for degrading organic pollutants in wastewater. Process Biochem. v. 64, p. 237-247, 2018.

KARIMINIK, A.; BASERI-SALEHI, M.; KHEIRKHAN, B. Pseudomonas aeruginosa quorum sensing modulates immune responses: An updated review article. Immunol Lett. v. 190, p. 1-6, 2017. doi: 10.1016/j.imlet.2017.07.002.

KASKATEP, B.; YILDIZ, S. Rhamnolipid biosurfactants produced by Pseudomonas species. Braz Arch Biol Technol. v. 59, p. e16160786, 2016. doi: 10.1590/1678-4324-2016160786.

KHARAKA, Y.K.; THORDSEN, J.J.; KAKOUROS, E.; HERKELRATH, W.N. Impacts of petroleum production on ground and surface waters: Results from the Osage–Skiatook Petroleum Environmental Research A site, Osage County, Oklahoma. Environ Geosci. v. 12, n. 2, p. 127-138, 2005.

KIM, K.; JAHAN, S.A.; KABIR, E.; BROWN, R.J. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ Int. v. 60, p. 71-80, 2013.

KULIK, N.; GOI, A.; TRAPIDO, M.; TUHKANEN, T. Degradation of polycyclic aromatic hydrocarbons by combined chemical pre-oxidation and bioremediation in creosote contaminated soil. J Environ Manag. v. 78, n. 4, p. 382-391, 2006.

KUMARI, S.; MANGWANI, N.; DAS, S. Naphthalene catabolism by biofilm forming marine bacterium Pseudomonas aeruginosa N6P6 and the role of quorum sensing in regulation of dioxygenase gene. J Appl Microbiol. v. 130, n. 4, p. 1217-1231, 2020.

LABUD, V.; GARCIA, C.; HERNANDEZ, T. Effect of hydrocarbon pollution on the microbial properties of a sandy and a clay soil. Chemosphere. v. 66, n. 10, p. 1863-1871, 2007.

LAU, G.W.; RAN, H.; KONG, F.; HASSETT, D.J.; MAVRODI, D. Pseudomonas aeruginosa pyocyanin is critical for lung infection in mice. Infect Immun. v. 72, n. 7, p. 4275–4278, 2004.

LAURENT, F.; CÉBRON, A.; SCHWARTZ, C.; LEYVAL, C. Oxidation of a PAH polluted soil using modified Fenton reaction in unsaturated condition affects biological and physico-chemical properties. Chemosphere. v. 86, n. 6, p. 659-664, 2012.

LAURSEN, J.B.; NIELSEN, J. Phenazine natural products: biosynthesis, synthetic analogues, and biological activity. Chem Rev. v. 104, n. 3, p. 1663-1686, 2004.

LEE, B.; HOSOMI, M. A hybrid Fenton oxidation–microbial treatment for soil highly contaminated with benzo(a)anthracene. Chemosphere. v. 43, n. 8, p. 1127-1132, 2001.

LI, J.; CHEN, W.; ZHOU, W.; WANG, Y.; DENG, M.; ZHOU, S. Synergistic degradation of pyrene by Pseudomonas aeruginosa PA06 and Achromobacter sp. AC15 with sodium citrate as the co-metabolic carbon source. Ecotoxicology. v. 30, p. 1487–1498, 2021. doi: 0.1007/s10646-020-02268-3.

LIU, G.Y.; NIZET, V. Color me bad: Microbial pigments as virulence factors. Trends Microbiol. v. 17, p. 406-413, 2009.

LIU, H.; YANG, G.; JIA, H.; SUN, B. Crude oil degradation by a novel strain Pseudomonas aeruginosa AQNU-1 isolated from an oil-contaminated lake wetland. Processes. v. 10, n. 2, p. 307, 2022. doi:10.3390/pr10020307.

LIU, M-H.; HSIAO, C-H.; WANG, Y-S.; CHEN, W-Y.; HUNG, J-M. Tandem modified Fenton oxidation and bioremediation to degrade lubricant-contaminated soil. Int Biodegrad Biodeterior. v. 143, p. 104738, 2019. doi: 10.1016/j.ibiod.2019.104738.

LOBO, C.; SANCHEZ, M.; GARBI, C.; FERRER, E.; MARTINEZ-IÑIGO, M.J.; ALLENDE, J.L.; MARTÍN, C.; CASASÚS, L.; ALONSO, R.; GIBELLO, A.; MARTIN M. Immobilized native bacteria as a tool for bioremediation of soils and waters: implementation and modeling. Sci World J. v. 18, n. 2, p. 1361-1368, 2002.

LONG, M.; WEN, L.; MUTAI, B.; PEIYAN, S. Effect of surfactants on the solubilization, sorption and biodegradation of benzo (a) pyrene by Pseudomonas aeruginosa BT-1. J Taiwan Inst Chem Eng. v. 96, p. 121-130, 2019.

MA, J. ; MA, W. ; SONG, W. ; CHEN, C. ; TANG, Y. ; ZHAO, J. ; ZHANG, L. Fenton degradation of organic pollutants in the presence of low-molecular-weight organic acids: Cooperative effect of quinone and visible light. Environ Sci Technol. v. 40, n. 2, p. 618-624, 2006.

MANGWANI, N.; SHUKLA, S.K.; KUMARI, S.; DAS, S.; RAO, T.S. Effect of biofilm parameters and extracellular polymeric substance composition on polycyclic aromatic hydrocarbon degradation. RSC Adv. v. 6, n. 62, p. 57540–57551, 2016.

MANZETTI, S. Polycyclic aromatic hydrocarbons in the environment: environmental fate and transformation. Polycycl Aromat Compd. v. 33, n. 4, p. 311-330, 2013.

MAVRODI, D.V.; BONSALL, R.F.; DELANEY, S.M.; SOULE, M.J.; PHILLIPS, G.; THOMASHOW, L.S. Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol. v. 183, n. 21, p. 6454-6465, 2001.

MEIRELLES, L.A.; NEWMAN, D.K. Both toxic and beneficial effects of pyocyanin contribute to the lifecycle of Pseudomonas aeruginosa. Mol Microbiol. v. 110, n. 6, p. 95-101, 2018.

MELIANI, A.; BENSOLTANE, A. Enhancement of hydrocarbons degradation by use of Pseudomonas biosurfactants and biofilms. J Pet Environ Biotechnol. v. 5, n. 1, p. 1000168, 2014. doi: 10.4172/2157-7463.1000168.

MULLER, M.; MERRETT, N.D. Pyocyanin production by Pseudomonas aeruginosa confers resistance to ionic silver. Antimicrob Agents Chemother. v. 58, n. 9, p. 5492–5499, 2014.

MISHRA, S.; SINGH, S.N.; PANDE, V. Bacteria induced degradation of fluoranthene in minimal salt medium mediated by catabolic enzymes in vitro condition. Bioresour Technol. v. 164, p. 299-308, 2014.

MNIF, I.; GHRIBI, D. Review lipopeptides biosurfactants: mean classes and new insights for industrial, biomedical, and environmental applications. J Pept Sci. v. 104, n. 3, p. 129-147, 2015.

MORKUNAS, B.; GALLOWAY, W.R.J.D.; WRIGHT, M.; IBBESON, B.M.; HODGKINSON, J.T.; O'CONNELL, K.M.G.; BARTOLUCCI, N.; DELLA VALLE, M.; WELCH, M.; SPRING, D.R. Inhibition of the production of the Pseudomonas aeruginosa virulence factor pyocyanin in wild-type cells by quorum sensing autoinducer-mimics. Org Biomol Chem. v. 10, p. 8452-8464, 2012.

MOSHTAGH, B.; HAWBOLDT, K.; ZHANG, B. Biosurfactant production by native marine bacteria (Acinetobacter calcoaceticus P1‐1A) using waste carbon sources: Impact of process conditions. Can J Chem Eng. v. 99, n. 11, p. 2386-2397, 2021.

MUKHERJEE, A.K.; BHAGOWATI, P.; BISWA, B.B.; CHANDA, A.; KALITA, B. A comparative intracellular proteomic profiling of Pseudomonas aeruginosa strain ASP-53 grown on pyrene or glucose as sole source of carbon and identification of some key enzymes of pyrene biodegradation pathway. J Proteom. v. 167, n. 1, p. 25-35, 2017.

MUTHUKAMALAM, S.; SIVAGANGAVATHI, S.; DHRISHYA, D.; RANI, S.S. Characterization of dioxygenases and biosurfactants produced by crude oil degrading soil bacteria. Braz J Microbiol. v. 48, p. 637-647, 2017.

NAEEM, U.; QAZI, M.A. Leading edges in bioremediation technologies for removal of petroleum hydrocarbons. Environ Sci Pollut Res. v. 27, n. 22, p. 27370-27382, 2020.

NAM, K.; RODRIGUEZ, W. ; KUKOR, J.J. Enhanced degradation of polycyclic aromatic hydrocarbons by biodegradation combined with a modified Fenton reaction. Chemosphere. v. 45, n. 1, p. 11-20, 2001.

NEVES, M.L.R.; NUNES, L.E.; ROCHA, W.R.V.; XIMENES, E.C.P.A.; ALBUQUERQUE, M.C.P.A. The influence of quorum sensing on the formation of biofilm by Pseudomonas aeruginosa. Res Soc Develop. v. 10, n. 2, p. e33910212659, 2021. doi: 10.33448/rsd-v10i2.12659.

NIE, H.; NIE, M.; DIWU, Z.; WANG, L.; QIAO, Q.; ZHANG, B.; YANG, X. Homogeneously catalytic oxidation of phenanthrene by the reaction of extracellular secretions of pyocyanin and Nicotinamide Adenine Dinucleotide. Environ Res. v. 191, p. 110159, 2020. doi: 10.1016/j.envres.2020.110159.

NORMAN, R.S. ; MOELLER, P. ; McDONALD, T.J. ; MORRIS, P.J. Effect of pyocyanin on a crude-oil-degrading microbial community. Appl Environ Microbiol. v. 70, n. 7, p. 4004-4011, 2004.

OLIVEIRA, B.T.M.; BARBOSA, P.S.Z.; CAVALCANTI, T.G.; AMARAL, I.P.G.; VASCONCELOS, U. Craft beer waste as substrate for pyocyanin synthesis. J Pharm Biol Sci. v. 14, n. 1, p. 21–25, 2019.

OMAROVA, M.; SWIENTONIEWSKI, L.T.; TSENGAM, I.K.M.; BLAKE, D.A.; JOHN, V.; McCORMICK, A.; BOTHUN, G.D.; RAGHAVAN, S.R.; BOSE, A. Biofilm formation by hydrocarbon-degrading marine bacteria and its effects on oil dispersion. ACS Sustain Chem Eng. v. 7, n. 17, p. 14490–14499, 2019.

OSEGUEDA, O.; DAFINOV, A.; LLORCA, J.; MEDINA, F.; SUERIAS, J. In situ generation of hydrogen peroxide in catalytic membrane reactors. Catal Today. v. 193, n. 1, p. 128-136, 2012.

OZDAL, M.; GURKOK, S.; OZDAL, O.G. Enhancement of pyocyanin production by Pseudomonas aeruginosa via the addition of n-hexane as an oxygen vector. Biocatal Agric Biotechnol. v. 22, p. 101365, 2019. doi: 10.1016/j.bcab.2019.101365.

PALLERONI, N.J. The Pseudomonas story. Environ Microbiol. v. 12, n. 6, p. 1377-13783, 2010. doi: 10.1111/j.1462-2920.2009.02041.x.

PATEL, A.K.; SINGHANIA, R.; ALBARICO, F.P.J.; PANDEY, A.; CHEN, C-W.; DONG, C-D. Organic wastes bioremediation and its changing prospects. Sci Total Environ. v. 824, p. 153889, 2022. doi: 10.1016/j.scitotenv.2022.153889.

PENG, Y. ; BUEKENS, A. ; TANG, M. ; LU, S. Mechanochemical treatment of fly ash and de novo testing of milled fly ash. Environ Sci Pollut Res. v. 25, n. 19, p. 19092-19100, 2018.

PIERSON III, L.S. ; PIERSON, E.A. Metabolism and function of phenazines in bacteria: Impacts on the behavior of bacteria in the environment and biotechnological processes. Appl Microbiol Biotechnol. v. 86, n. 6, p. 1659-1670, 2010.

POATER, J.; DURAN, M.; SOLÀ, M. Aromaticity determines the relative stability of kinked vs. straight topologies in polycyclic aromatic hydrocarbons. Front Chem. v. 20, n. 6, p. 561, 2018. doi: 10.3389/fchem.2018.0056.

PRICE-WHELAN, A.; DIETRICH, L.E.P.; NEWMAN, D.K. Pyocyanin alters redox homeostasis and carbon flux through central metabolic pathways in Pseudomonas aeruginosa PA14. J Bacteriol. v. 189: 6372–6381, 2007.

QADEER, A.; HOU, L.; YANG, J.; LI, X.; KHALIL, S.K.; HUANG Y, AL MAMUM MH, GAO D, YANG Y. Trophodynamics and parabolic behaviors of polycyclic aromatic hydrocarbons in an urbanized lake food web, Shanghai. Ecotoxicol Environ Saf. v. 178, p. 17-24, 2019. doi: 10.1016/j.ecoenv.2019.04.003.

RABONI, M.; VIOTTI, P. 2016. Formation and destruction of Polycyclic Aromatic Hydrocarbons (PAHs) in the flaring of the biogas collected from an automotive shredded residues landfill. Rev Ambient Água. v. 11, n. 1, p. 4-12, 2016.

RAFAQAT, S.; ALI, N.; TORRES, C.; RITTMANN, B. Recent progress in treatment of dyes wastewater using microbial-electro-Fenton technology. RSC Adv. v. 12, p. 17104-17137, 2022.

RASHID, M.I.; ANDLEEB, S. Pyocyanin yield improvement for enhancement of Pseudomonas aeruginosa inoculated Microbial Fuel Cell efficiency. 2018 International Conference on Power Generation Systems and Renewable Energy Technologies (PGSRET). doi:10.1109/pgsret.2018.8685940.

RAVINDRA, K.; SOKHI, R.; Van GRIEKEN R. Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ. v. 42, n. 13, p. 2895-2921, 2008.

READING, N.C.; SPERANDIO, V. Quorum sensing: the many languages of bacteria. FEMS Microbiol Lett. v. 254, n. 1, p. 1-11, 2006. doi: 10.1111/j.1574-6968.2005.0001.x.

SANGWAN, S.; DUKARE, A. Microbe-mediated bioremediation:an eco-friendly sustainable approachfor environmental clean-up. In: ADHYA, T.K.; LAL, B.; MOHAPATRA, B.; PAUL, D.; DAS, S. (Ed.). Advances in soil microbiology: recent trends and future prospects. microorganisms for sustainability. Springer Natyre: Singapure, 2018, p. 145-163.

SANTOS, R.G.; LOH, W.; BANNWART, A.C.; TREVISAN, O.V. An overview of heavy oil properties and its recovery and transportation methods. Braz J Chem Eng. v. 31, n. 3, p. 571-590, 2014.

SCOTT-THOMAS, A.; SYHRE, M.; PATTEMORE, P.K.; EPTON, M.; LAING, R.; PEARSON, J.; CHAMBERS, S.T. 2-Aminoacetophenone as a potential breath biomarker for Pseudomonas aeruginosa in the cystic fibrosis lung. BMC Pulm Med. v. 10, n. 1, p. 1-10, 2010.

SILVA, E.S.; PRAGANA, L.G.; VASCONCELOS, U. Photooxidation vs biodegradation: A short review on fate of heavy hydrocarbons after oil spill in sea water. Int J Eng Res Appl. v. 11, n. 5, p. 8-17, 2021.

SINHA, S.; SHEN, X.; GALLAZZI, F.; LI, Q.; ZMIJEWSKI, J.W.; LANCASTER, J.R. Jr.; GATES, K.S. Generation of reactive oxygen species mediated by 1-hydroxyphenazine, a virulence factor of Pseudomonas aeruginosa. Chem Res Toxicol. v. 28, n. 2, p. 175-181, 2015.

STEFFAN, S.A.; CHIKARAISHI, Y.; CURRIE, C.R.; HORN, H.; GAINES-DAY, H.R.; PAULI, J.N.; ZALAPA, J.E.; OHKOUCHI, N. Microbes are trophic analogs of animals. PNAS. v. 112, n. 49, p. 15119-15124, 2015. doi: 10.1073/pnas.1508782112.

SVERDRUP, L.E.; NIELSEN, T. ; KROGH, P.H. Soil ecotoxicity of polycyclic aromatic hydrocarbons in relation to soil sorption, lipophilicity, and water solubility. Environ Sci Technol. v. 36, n. 11, p. 2429-2435, 2002.

TALVENMÄKI, H.; SAARTAMA, N.; HAUKKA, A.; LEPIKKÖ, K.; PAJUNEN, V.; PUNKARI, M.; GUOYONG, Y.; SINKKONEN, A.; PIEPPONEN, T.; SILVENNOINEN, H.; ROMANTSCHUK, M. In situ bioremediation of Fenton’s reaction–treated oil spill site, with a soil inoculum, slow release additives, and methyl-β-cyclodextrin. Environ Sci Pollut Res. v. 28, p. 20273–20289, 2021. doi : 10.1007/s11356-020-11910-w.

TERAMOTO, M.; QUECK, S.Y.; OHNISHI, K. Specialized hydrocarbonoclastic bacteria prevailing in seawater around a port in the Strait of Malacca. PLoS One. v. 8, n. 6, p. e66594, 2013. doi: 10.1371/journal.pone.0066594.

UKALSKA-JARUGA, A.; DABAENE, G.; SMRECZAK, B. Dissipation and sorption processes of polycyclic aromatic hydrocarbons (PAHs) to organic matter in soils amended by exogenous rich-carbon material. J Soils Sediments. v. 20, p. 836–849, 2020. doi: 10.1007/s11368-019-02455-8.

URVOY, M.; LABRY, C.; L’HELGUEN, S.; LAMI, R. Quorum sensing regulates bacterial processes that play a major role in marine biogeochemical cycles. Front Marine Sci. v. 9, p. 834337, 2022. doi: 10.3389/fmars.2022.834337.

VALDERRAMA, C.; ALESSANDRI, R.; AUNOLA, T.; CORTINA, J.L.; GAMISANS, X.; TUHKANEN, T. Oxidation by Fenton's reagent combined with biological treatment applied to a creosote-contaminated soil. J Hazard Mater. v. 166, n. 2-3, p. 594-602, 2009.

VANDRISSE, C.M.; LIPSH-SOKOLIK, R.; KHERSONSKY, O.; NEWMAN, D.K. Computationally designed pyocyanin demethylase acts synergically with tobramycin to kill recalcitrant Pseudomonas aeruginosa biofilms. PNAS. v. 118, n. 12, p. e2022012118, 2021. doi: 10.1073/pnas.2022012118.

VARJANI, S.J. Microbial degradation of petroleum hydrocarbons. Bioresour Technol. v. 223, p. 277-286, 2017.

VARJANI, S.; UPASANI, V.N.; PANDEY, A. Bioremediation of oily sludge polluted soil employing a novel strain of Pseudomonas aeruginosa and phytotoxicity of petroleum hydrocarbons for seed germination. Sci Total Environ. v. 737, p. 139766, 2020. doi: 10.1016/j.scitotenv.2020.139766.

VIANA, A.A.G.; MARTINS, R.X.; FERREIRA, G.F.; ZENAIDE-NETO, H.; AMARAL, I.P.G.; VASCONCELOS, U. Pseudomonas aeruginosa and pyocyanin negatively act on the establishment of Enterobacteriaceae biofilm on a ceramic surface. Int J Eng Res Appl. v. 7, n. 8, p. 23-30, 2017.

VIANA, A.A.G.; OLIVEIRA, B.T.M.; CAVALCANTI, T.G.; SOUSA, K.A.; MENDONÇA, E.A.M.; AMARAL, I.P.G.; VASCONCELOS, U. Correlation between pyocyanin production and hydrocarbonoclastic activity in nine strains of Pseudomonas aeruginosa. Int J Adv Eng Res Sci. v. 5, n. 7, p. 212-223, 2018.

WANG, C.; WANG, Y.; HERATH, H.M.S.K. Polycyclic aromatic hydrocarbons (PAHs) in biochar–Their formation, occurrence and analysis: A review. Org Geochem. v. 114, p. 1-11, 2017.

WANG, K.; KAI, L.; ZHANG, K.; HAO, M.; YU, Y.; XU, X.; YU, Z.; CHEN, L.; CHI, X.; GE, Y. Overexpression of phzM contributes to much more production of pyocyanin converted from phenazine-1-carboxylic acid in the absence of RpoS in Pseudomonas aeruginosa. Arch Microbiol. v. 202, n. 6, p. 1507-1515, 2020. doi: 10.1007/s00203-020-01837-8.

WEISER, R.; GREEN, A.E.; BULL, M.J.; CUNNINGHAM-OAKES, E.; JOLLEY, K.A.; MAIDEN, M.C.J.; HALL, A.J.; WINSTANLEY, C.; WEIGHTMAN, A.J.; DONOGHUE, D.; AMEZQUITA, A.; CONNOR, T.R.; MAHENTHIRALINGAM, E. Not all Pseudomonas aeruginosa are equal: strains from industrial sources possess uniquely large multireplicon genomes. Microb Genom. v. 5, n. 7, p. e000276, 2019. doi: 10.1099/mgen.0.000276.

WHOOLEY, M.A.; McLOUGHLIN, A.J. The regulation of pyocyanin production in Pseudomonas aeruginosa. Eur J Appl Microbiol Biotechnol. v. 15, p. 161-166, 1982.

XUE, S-W. ; TIAN, Y-X. ; PAN, J-C. ; LIU, Y-N. ; MA, Y-L. Binding interaction of a ring-hydroxylating dioxygenase with fluoranthene in Pseudomonas aeruginosa DN1. Sci Rep. v. 11, p. 21317, 2021. doi: 10.1038/s41598-021-00783-9.

YAKOVLEVA, E.V.; GABOV, D.N.; BEZNOSIKOV, V.A.; KONDRATENOK, B.M.; DUBROVSKIY, Y.A. Accumulation of PAHs in tundra plants and soils under the influence of coal mining. Polycycl Aromat Compd. v. 37, n. 2-3, p. 203-218, 2016. doi: 10.1080/10406638.2016.124408.

YAN, S.; WU, G. Can biofilm be reversed through quorum sensing in Pseudomonas aeruginosa? Front Microbiol. v. 10, p. 01582, 2019. doi: 10.3389/fmicb.2019.01582.

YAN, S.; WU, G. Reorganization of gene network for degradation of polycyclic aromatic hydrocarbons (PAHs) in Pseudomonas aeruginosa PAO1 under several conditions. J Appl Genet. v. 58, n. 4, p. 545-563, 2017. doi: 10.1007/s13353-017-0402-9.

ZHANG, L.; CHIANG, W.C.; GAO, Q.; GIVSKOV, M.; TOLKER-NIELSEN, T.; YANG, L.; ZHANG, G. The catabolite repression control protein Crc plays a role in the development of antimicrobial-tolerant subpopulations in Pseudomonas aeruginosa biofilms. Microbiology. v. 158, p. 3014–3019, 2012. doi: 10.1099/mic.0.061192-0.

ZHANG, X-X.; CHENG, S-P.; ZHU, C-J.; SUN, S-L. Microbial PAH-degradation in soil: Degradation pathways and contributing factors. Pedosphere. v. 16, n. 5, p. 555-565, 2006.

Downloads

Publicado

2022-11-03

Como Citar

Pragana, L. G., Norat, C. E. T. ., Dias, D. S. B., Kretzschmar, E. A. de M., Travassos, R. de A., & Vasconcelos, U. (2022). Summary of the role of pyocyanin in the transformation and biodegradation of Polycyclic Aromatic Hydrocarbons. Conjecturas, 22(15), 405–429. https://doi.org/10.53660/CONJ-1874-2P12

Edição

Seção

Artigos