Insetos comestíveis como fonte de proteínas emergentes: revisão

Autores

DOI:

https://doi.org/10.53660/CONJ-1939-2R02

Palavras-chave:

Alimento emergente, Entomofagia, Saudabilidade, Sustentabilidade

Resumo

A entomofagia, ou seja, o consumo de insetos, é considerado uma tendência futura e uma estratégia viável, isso devido sua produção ser mais sustentável quando comparada a outras fontes de proteínas convencionais. Além disso, os insetos possuem considerável teor de proteínas, contendo aminoácidos essenciais e não essenciais, com propriedades biológicas. Diante disso, o presente trabalho teve como objetivo abordar o uso de insetos na alimentação humana, destacando aspectos sociais, econômicos e ambientais em sua produção e consumo, bem como, os aspectos nutricionais, principalmente em relação ao conteúdo proteico.

Downloads

Não há dados estatísticos.

Referências

AGBIDYE, F. S. et al. Some edible insect species consumed by the people of Benue State, Nigeria. Pakistan Journal of Nutrition, v. 8, n. 7, p. 946-950, 2009.

AKHTAR, Y.; ISMAN, M. Insects as an alternative protein source. In: (Ed.). Proteins in food processing: Elsevier, 2018. p.263-288.

ANADUAKA, E. G. et al. Nutritional compositions of two edible insects: Oryctes rhinoceros larva and Zonocerus variegatus. Heliyon, v. 7, n. 3, p. e06531, 2021.

BAIANO, A. Edible insects: An overview on nutritional characteristics, safety, farming, production technologies, regulatory framework, and socio-economic and ethical implications. Trends in Food Science & Technology, v. 100, p. 35-50, 2020.

CHAKRAVORTY, J. et al. Nutritional and anti-nutritional composition of Oecophylla smaragdina (Hymenoptera: Formicidae) and Odontotermes sp.(Isoptera: Termitidae): Two preferred edible insects of Arunachal Pradesh, India. Journal of Asia-Pacific Entomology, v. 19, n. 3, p. 711-720, 2016.

CHAMPE, Pamela C .; HARVEY, Richard A .; FERRIER, Denise R. Biochemistry. Lippincott Williams & Wilkins, 2005.

DA ROSA MACHADO, C.; THYS, R. C. S. Cricket powder (Gryllus assimilis) as a new alternative protein source for gluten-free breads. Innovative Food Science & Emerging Technologies, v. 56, p. 102180, 2019.

DE ANDRADE MARCONI, Marina; LAKATOS, Eva Maria. Metodologia do trabalho científico: procedimentos básicos, pesquisa bibliográfica, projeto e relatório, publicações e trabalhos científicos. Atlas, 2007.

DE CASTRO, R. J. S.; SATO, H. H. Biologically active peptides: Processes for their generation, purification and identification and applications as natural additives in the food and pharmaceutical industries. Food Research International, v. 74, p. 185-198, 2015.

ESKOLA, M. et al. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’of 25%. Critical reviews in food science and nutrition, v. 60, n. 16, p. 2773-2789, 2020.

FAO. A Situação Mundial da Pesca e Aquicultura 2020 . Sustentabilidade em ação . Roma. 2020.

FAO. Edible insects: Future prospects for food and feed security. Rome. Food and Agriculture Organization of the United Nations-FAO. 2013. 2013

FENG, Y. et al. Edible insects in China: Utilization and prospects. Insect Science, v. 25, n. 2, p. 184-198, 2018.

GHOSH, S. et al. Nutritional composition of five commercial edible insects in South Korea. Journal of Asia-Pacific Entomology, v. 20, n. 2, p. 686-694, 2017.

HALL, F. G. et al. Functional properties of tropical banded cricket (Gryllodes sigillatus) protein hydrolysates. Food Chemistry, v. 224, p. 414-422, 2017.

IMATHIU, S. Benefits and food safety concerns associated with consumption of edible insects. NFS Journal, v. 18, p. 1-11, 2020.

JUSTINO, H. F. M. et al. Insetos na alimentação humana: composição nutricional, PROCESSAMENTO E NEOFOBIA.. In: Anais do I Simpósio Online Sulamericano de Tecnologia, Engenharia e Ciência de Alimentos. Diamantina(MG) Online, 2022b.

JUSTINO, H. F. M. et al. Principais biopolímeros derivados de subprodutos alimentares: uma breve revisão. The Journal of Engineering and Exact Sciences, v. 8, n. 7, p. 14711-01e, 2022a.

LI-CHAN, E. C. Bioactive peptides and protein hydrolysates: research trends and challenges for application as nutraceuticals and functional food ingredients. Current Opinion in Food Science, v. 1, p. 28-37, 2015.

MISHYNA, M.; KEPPLER, J. K.; CHEN, J. Techno-functional properties of edible insect proteins and effects of processing. Current Opinion in Colloid & Interface Science, p. 101508, 2021.

OIBIOKPA, F. I. et al. Nutrient and antinutrient compositions of some edible insect species in Northern Nigeria. Fountain Journal of Natural and Applied Sciences, v. 6, n. 1, 2017.

OIBIOKPA, F. I. et al. Protein quality of four indigenous edible insect species in Nigeria. Food Science and Human Wellness, v. 7, n. 2, p. 175-183, 2018.

OJHA, S. et al. Edible insect processing pathways and implementation of emerging technologies. Journal of Insects as Food and Feed, v. 7, n. 5, p. 877-900, 2021.

OONINCX, D. G. et al. An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PloS one, v. 5, n. 12, p. e14445, 2010.

PAYNE, C. L. et al. A systematic review of nutrient composition data available for twelve commercially available edible insects, and comparison with reference values. Trends in Food Science & Technology, v. 47, p. 69-77, 2016.

PIETRZYK, A. J. et al. Crystal structure of Bombyx mori lipoprotein 6: Comparative structural analysis of the 30-kDa lipoprotein family. Plos one, v. 9, n. 11, p. e108761, 2014.

PIETRZYK, A. J. et al. Crystallographic identification of an unexpected protein complex in silkworm haemolymph. Acta Crystallographica Section D: Biological Crystallography, v. 69, n. 12, p. 2353-2364, 2013.

PIMENTEL, D.; PIMENTEL, M. Sustainability of meat-based and plant-based diets and the environment. The American journal of clinical nutrition, v. 78, n. 3, p. 660S-663S, 2003.

ROTHEMUND, S. et al. A new class of hexahelical insect proteins revealed as putative carriers of small hydrophobic ligands. Structure, v. 7, n. 11, p. 1325-1332, 1999.

RUMPOLD, B. A.; SCHLÜTER, O. K. Potential and challenges of insects as an innovative source for food and feed production. Innovative Food Science & Emerging Technologies, v. 17, p. 1-11, 2013.

SOSA, Daylan Amelia Tzompa; FOGLIANO, Vincenzo. Potential of insect-derived ingredients for food applications. Insect physiology and ecology, p. 215-231, 2017.

TACO. TACO- TABELA BRASILEIRA DE COMPOSIÇÃO DE ALIMENTOS. NEPA-UNICAMP. 4: 161-319 p. 2011.

TAO, J.; LI, Y. O. Edible insects as a means to address global malnutrition and food insecurity issues. Food Quality and Safety, v. 2, n. 1, p. 17-26, 2018.

VAN HUIS, Arnold et al. Edible insects: future prospects for food and feed security. Food and agriculture organization of the United Nations, 2013.

VERHOECKX, K. C. et al. House dust mite (Der p 10) and crustacean allergic patients may react to food containing Yellow mealworm proteins. Food and Chemical Toxicology, v. 65, p. 364-373, 2014.

YEN, A. Insects as food and feed in the Asia Pacific region: current perspectives and future directions. J Insects as Food Feed 1: 33–55 2015.

YI, L. et al. Protein identification and in vitro digestion of fractions from Tenebrio molitor. European Food Research and Technology, v. 242, n. 8, p. 1285-1297, 2016.

ZHANG, P. et al. Proteomic Profiling of the Silkworm Skeletal Muscle Proteins during Larval− Pupal Metamorphosis. Journal of proteome research, v. 6, n. 6, p. 2295-2303, 2007.

Downloads

Publicado

2022-11-17

Como Citar

Mendes Justino, H. de F., Cunha, J. S. ., & Leite Júnior, B. R. de C. (2022). Insetos comestíveis como fonte de proteínas emergentes: revisão. Conjecturas, 22(15), 884–895. https://doi.org/10.53660/CONJ-1939-2R02

Edição

Seção

Artigos