Bioremediation of terbuthylazine contaminated soil: a bibliometric and systematic review

Autores

  • Carolina Zuanazzi Tonello Universidade de Passo Fundo
  • Natalia Buttini Correa Universidade de Passo Fundo
  • Luciane Maria Colla Universidade de Passo Fundo

DOI:

https://doi.org/10.53660/CONJ-2306-23A07

Palavras-chave:

Atrazine, phytoremediation, desethylterbutylazine

Resumo

A contaminação por pesticidas representa um perigo para o meio ambiente em todo o mundo devido a seus processos de mobilidade e infiltração. Os herbicidas compreendem 47,5% dos pesticidas disponíveis no mundo sendo usados geralmente para proteger a cultura, porém existem várias maneiras pelas quais podem contaminar o solo. A atrazina tornou-se um dos herbicidas mais populares do mundo, porém seu uso causou contaminação de águas superficiais e subterrâneas pela molécula e seus produtos de degradação, sendo proibido em diversos países Europeus. A terbutilazina é utilizada nos países europeus como substituta no manejo químico em razão de suas características de menor solubilidade em água, maior hidrofobicidade e potencial de maior retenção no solo. Apesar de suas características favoráveis, a terbutilazina é atualmente um dos pesticidas mais frequentemente detectados em águas marinhas em países da União Europeia. A contaminação prolongada do solo está associada à liberação do metabólito DET e ao alto risco de contaminação também em águas subterrâneas. Um melhor conhecimento sobre as interações e agregação de materiais do solo facilitará o desenvolvimento de materiais biorremediadores para aumentar a sorção e diminuir a dissipação de pesticidas nos solos.

Downloads

Não há dados estatísticos.

Referências

Ancona V, Grenni P, Barra Caracciolo A, Campanale C, Di Lenola M, Rascio I et al. Plant-assisted bioremediation: an ecological approach for recovering multi-contaminated areas. Soil biological communities and ecosystem resilience. Sustainability in plant and crop protection. Springer, Cham, pp 291–303. 2017, doi: 10.1016/B978-0-12-822893-7.00012-4.

Ancona V., Barra Caracciolo A, Campanale C, Rascio I, Grenni P, Di Lenola M. Heavy metal phytoremediation of a poplar clone in a contaminated soil in southern Italy. J Chem Technol Biotechnol 95:940–949, 2020, doi: 10.1002/jctb.6145.

Anderson T.A., Guthrine E. A., Walton B. T. Bioremediation in the rhizosphere: plant roots and associated microbes clean contaminated soil. Environ Sci Technol 27:2630–2636. 1993, doi: 10.1021/es00049a001.

Anderson, T. A., Coats J. R. An overview of microbial degradation in the rhizosphere and its implications for bioremediation. In: Bioremediation: Science and Applications (eds Skipper HD and Turco RF). Soil Science Society of America, Madison, pp 135–143. 1995, doi: 10.2136/sssaspecpub43.c8.

Ariaz-Estévez, M.; López-Periago, E.; Martínez-Carballo, E.; Simal-Gándara, J.; Mejuto, J. C.; García-Rio, L. The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agriculture, Ecosystems and Environment, v. 123, p. 247-260, 2008, doi: 10.1016/j.agee.2007.07.011.

Barriuso E, Koskinen WC, Sadowsky MJ. Solvent extraction characterization of bioavailability of atrazine residues in soils. J Agric Food Chem. 2004, doi: 10.1021/jf040245l.

Behki, R.M., Khan, S. U. Degradation of atrazine by pseudomonas: N-dealkylation and dehalogenation of atrazine and its metabolites. J Agric Food Chem 34:746–749. 1986, doi: 10.1021/jf00070a039.

Blahová J, Plhalová L, Hostovský M, Divišová L, Dobšíková R, Mikulíková I, Stěpánová S, Svobodová Z. Oxidative stress responses in zebrafish Danio rerio after subchronic exposure to atrazine. Food Chem Toxicol. 2013 Nov;61:82-5. doi: 10.1016/j.fct.2013.02.041.

Brumovsky, M., Becanova, J., Kohoutek, J., Thomas, H., Petersen, W., Sorensen, K., Sanka, O., Nizzetto, L. Exploring the occurrence and distribution of contaminants of emerging concern through unmanned sampling from ships of opportunity in the North Sea. J. Mar. Syst. 162, 47e56. 2016, doi: 10.1016/j.jmarsys.2016.03.004.

Brumovsky, M.; Becanova, J.; Kohoutek, J.; Borghini, M.; Nizzetto, L. Contaminants of emerging concern in the open sea waters of the Western Mediterranean. Environmental Pollution, v. 229, p. 976-983, 2017, doi: 10.1016/j.envpol.2017.07.082.

Bustamante, M., Durán, N. e Diez, M.C. Biosurfactants are useful tools for the bioremediation of contaminated soil: a review. Journal of Soil Science and Plant Nutrition 12: 667-687. 2012, doi: 10.4067/S0718-95162012005000024.

Cabrera, A.; Cox, L.; Koskinen, W. C.; Sadowsky, M. J. Availability of triazine herbicides in aged soils amended with olive oil mill waste. Journal of Agricultural and Food Chemistry, v. 56, p. 4112-4119, 2008, doi: 10.1021/jf800095t.

Calderon, M. J.; De Luna, E.; Gomez, J. A.; Hermosin, M. C. Herbicide monitoring in soil, runoff waters and sediments in an olive orchard. Science of the Total Environment, v. 569-570, p. 569-570, 2016, doi: 10.1016/j.scitotenv.2016.06.126.

Caracciolo A. B.; Fajardo C, Grenni P, Saccà ML, Amalfitano S, Ciccoli R et al. The role of a groundwater bacterial community in the degradation of the herbicide terbuthylazine. FEMS Microbiol Ecol 71:127–136. 2010, doi: 10.1111/j.1574-6941.2009.00787.x.

Caracciolo, A. B.; Bottoni, P.; Grenni, P. Microcosm studies to evaluate microbial potential to degrade pollutants in soil and water ecosystems. Microchemical Journal, v. 107, p. 126-130, 2013, doi: 107(107):165-171.

Caracciolo, A. B.; Grenni, P. Bioremediation of Soil Ecosystems from Triazine Herbicides. Pesticides in soils, v. 113, p. 353-377, 2022, doi: 10.3390/agronomy12081971.

Carter, A. D. Herbicide movement in soils: principles, pathways and processes. Weed Research. Oxford; 2000, p. 113-122.

Chelinho, S., Moreira-Santos, M., Lima, D., Silva, C., Viana, P., André, S., Lopes, I., Ribeiro, R., Fialho, A.M., Viegas, C.A., e Sousa, J.P. Cleanup of atrazine-contaminatedd soils: ecotoxicological study on the efficacy of a bioremediation tool with Pseudomonas sp. ADP. J. Soils. Sed. 10: 568-578. 2010, doi: 10.1007/s11368-009-0145-2.

Cheng, H; Zhang, R; Chen, G. Sorption of four s-triazine herbicides on natural zeolite and clay mineral materials with microporosity. Fundamental Research, v 1, n. 3, p. 285-295, 2021, doi: 10.1016/j.fmre.2021.03.004.

Choudri, B. S.; Charabi, Y. Pesticides and herbicides. Water environment research. 2019 Aug: 1342-1349, doi: 10.1002/wer.1227.

Cycoń M, Mrozik A, Piotrowska-Seget Z. Bioaugmentation as a strategy for the remediation of pesticide-polluted soil: A review. Chemosphere 172 (2017): 52-71. 2017, doi: 10.1016/j.chemosphere.2016.12.129.

Cycón, M, A. Mrozik, Z. Piotrowska-Seget. Bioaugmentation as a strategy for the remediation of pesticide-polluted soil: a review. Chemosphere, 172, pp. 52-71. 2017.

Dong J, Wang L, Ma F, Yang J, Qi S, Zhao T. The effect of Funnelliformis mosseae inoculation on the phytoremediation of atrazine by the aquatic plant Canna indica L. var. flava Roxb. RSC Adv 6:22538–22549. 2016.

Dzantor E. K., Beauchamp R. G. Phytoremediation, part I: fundamental basis for the use of plants in remediation of organic and metal contamination. Environ Pract 4:77–87. 2002.

EFSA (European Food Safety Authority). Conclusion on the peer review of the pesticide risk assessment of the active substance terbuthylazine. EFSA J. 2011; 9: 1969.

Fadayomi, O.; Warren, G. F. Adsorption, desorption and leaching of nitrofen and oxyfluorfen. Weed Science, v. 36, p. 97-100, 1977, doi: 10.1017/S0043174500033038.

Farlin, J.; Galle, T.; Pittois, D.; Braun, C.; Khabbaz, H.; Lallement, C.; Leopold, U.; Vanderborght, J.; Weihermueller, L. Using the long-term memory effect of pesticide and metabolite soil residues to estimate field degradation half-life and test leaching predictions. Geoderma, v. 207, n. 208, p. 15-24, 2013, doi: 10.1016/j.geoderma.2013.04.028.

Fenoll J, Vela N, Navarro G, Pérez-Lucas G, Navarro S. Assessment of agro-industrial and composted organic wastes for reducing the potential leaching of triazine herbicide residues through the soil. Sci Total Environ 493:124–132. 2014, doi: 10.1016/j.scitotenv.2014.05.098.

Fingler, S., Mendas, G., Dvorscak, M., Stipicevic, S., Vasilic, Z., Drevenkar, V. Herbicide micropollutants in surface, ground and drinking waters within and near the area of Zagreb, Croatia. Environ. Sci. Pollut. Res. 24 (12), 2017, doi: 10.1007/s11356-016-7074-6.

Foght, J.; April, T.; Biggar, K.; Aisabia, J. Bioremediation of DDT-Contaminated soils: A review. Bioremediation Journal, v. 5, p. 225-246, 2001, doi: 10.1080/20018891079302.

Gavrilescu, M. Fate of pesticides in the environment and its bioremediation, v. 5, n. 6, p. 497-526, 2005, doi: 10.1002/elsc.200520098.

Gavrilescu, M. Removal of heavy metals from the environment by biosorption. Engineering in Life Sciences, v. 4, p. 219-232, 2004, doi: 10.1002/elsc.200420026.

Giannini-Kurina, F., Borello, J, Cañas, I., Hang, S., Balzarini, M. Mapping atrazine persistence in soils of central Argentina using INLA. Soil Tillage Res., 219, 2022, doi: 10.1016/j.still.2022.105320.

Gill, H., and Garg, H. Pesticides: Environmental Impacts and Management Strategies, Pesticides-Toxic Aspects. London: IntechOpen. 2014. doi: 10.5772/57399.

Grenni P, Gibello A, Barra Caracciolo A, Fajardo C, Nande M, Vargas R et al. A new fluorescent oligonucleotide probe for in situ detection of s-triazine-degrading Rhodococcus wratislaviensis in contaminated groundwater and soil samples. Water Res 43:2999–3008. 2009, doi: 10.1016/j.watres.2009.04.022.

Jacobsen C, Shapir N, Jensen L, Jensen E, Juhler R, Streibig J et al. Bioavailability of triazine herbicides in a sandy soil profile. Biol Fertil Soils 33:501–506. 2001, doi: 10.1021/jf800095t.

Jain, R.K., Kapur, M., Labana, S., Lal, B., Sarma, P.M., Bhattacharya, D. e Thakur, I.S. Microbial diversity: Application of microorganisms for the biodegradation of xenobiotics. Curr. Sci. 89, 101-112. 2005.

Johannesen H, Aamand J. Mineralization of aged atrazine, terbuthylazine, 2, 4-D, and mecoprop in soil and aquifer sediment. Environ Toxicol Chem; 22: 722–729. 2003, doi: 10.1002/etc.5620220407.

Knuteson SL, Whitwell T, Klaine SJ. Influence of plant age and size on simazine toxicity and uptake. J Environ Qual 31:2096–2103. 2002, doi: 10.2134/jeq2002.2096.

Kuhard, R. C.; Johri, A. K.; Singh, A.; Ward, O. P. Bioremediation of pesticide-contaminated soils. In: SINGH, A.; WARD, O. P. Soil Biology, ed. 1, p. 35-54, 2004, doi: 10.21474/IJAR01/1632.

Lima, D., Viana, P., André, S., Chelinho, S., Costa, C., Ribeiro, R., Sousa, J.P., Fialho, A.M. e Viegas, C.A. Evaluating a bioremediation tool for atrazine contaminated soils in open soil microcosms: The effectiveness of bioaugmentation and biostimulation approaches. Chemosphere 74: 187-192. 2009, doi: 10.1016/j.chemosphere.2008.09.083.

Loos, R., Locoro, G., Comero. S., Contini, S., Schwesig, D., Werres, F., Balsaa, P., Gans, O., Weiss, S., Blaha, L., Bolchi, M., Gawlik, BM. Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water. Water Res. 44 (14), 4115-4126. 2010, doi: 10.1016/j.watres.2010.05.032.

Lu, Y. C.; Feng, S. J.; Zhang, J. J.; Luo, F.; Zhang, S.; Yang, H. Genome-wide identification of DNA methylation provides insights into the association of gene expression in rice exposed to pesticide atrazine. Science Reports, v. 6, 2016, doi: 10.1038/srep18985.

Mandelbaum RT, Allan DL, Wackett LP. Isolation and characterization of a Pseudomonas sp. that mineralizes the s-triazine herbicide atrazine. Appl Environ Microbiol 61:1451–1457. 1995, doi: 10.1128/aem.61.4.1451-1457.

Mendes, K. F.; Reis, M. R.; Inoue, M. H.; Pimpinato, R. F.; Tornisielo, V. L. Sorption and desorption of mesotrione alone and mixed with s-metolachlor+terbuthylazine in Brazilian soils. Geoderma, v. 280, p. 22-28, 2016, doi: 10.1016/j.geoderma.2016.06.014.

Merini LJ, Bobillo C, Cuadrado V, Corach D, Giulietti AM. Phytoremediation potential of the novel atrazine tolerant Lolium multiflorum and studies on the mechanisms involved. Environ Pollut 157:3059–3063. 2009, doi: 10.1016/j.envpol.2009.05.036.

Moran, A.C.; Muller, A.; Manzano, M.; Gonzalez, B. Simazine treatment history determines a significant herbicide degradation potential in soils that is not improved by bioaugmentation with Pseudomonas sp. Journal of Applied Microbiology, v. 101, p. 26–35, 2006, doi: 10.1111/j.1365-2672.2006.02990.x.

Mudhoo, A.; Garg, V. K. Sorption, transport and transformation of atrazine in soils, minerals and composts: a review. Pedosphere, v. 21, p. 11–25, 2011, doi: 10.1016/S1002-0160(10)60074-4.

Mueller, J. G., Cerniglia, C. E., Pritchard., P. H. Bioremediation of Environments Contaminated by Polycyclic Aromatic Hydrocarbons. In Bioremediation: Principles and Applications: 125–194, Cambridge University Press, Cambridge. 1996, doi: 10.1017/CBO9780511608414.007.

Mueller, T.C.; Senseman, S.A. Methods related to herbicide dissipation or degradation under field or laboratory conditions. Weed Science, v. 63, p. 133–139, 2015, doi: 10.1614/WS-D-13-00157.1.

Nedjimi B. Phytoremediation: a sustainable environmental technology for heavy metals decontamination. SN Appl Sci 3:286. 2021, doi: 10.1007/s42452-021-04301-4.

Odendaal, C., Seaman, M.T., Kemp, G., Patterton, H.E., Patterton, H.G. An LC[1]MS/MS based survey of contaminants of emerging concern in drinking water in South Africa. South Afr. J. Sci. 111, 9e10. 2015, doi: 10.17159/sajs.2015/20140401.

OSTROFSKY, E.B. et al. Analysis of atrazine-degrading microbial communities in soils using most-probable-number enumeration, DNA hybridization, andinhibitors. Soil Biol Biochem, v.34, p.1449-1459, 2002, doi: 10.2436/20.1501.01.29.

Patakioutas, G.; Albanis, T. A. Adsorption-desorption studies of alachlor, matachlor, EPTC, chlorothalonil and pirimiphos-methyl in contrasting soils. Pest Management Science, v. 58, p. 352-362, 2002, doi: 10.1002/ps.464.

Pinto AP, Serrano C, Pires T, Mestrinho E, Dias L, Teixeira DM et al. Degradation of terbuthylazine, difenoconazole and pendimethalin pesticides by selected fungi cultures. Sci Total Environ 435–436:402–410. 2012, doi: 10.1016/j.scitotenv.2012.07.027.

Pionkle HB, Glotfelty DE, Lucas AD, Urban JB. Pesticide contamination of ground waters in the Mahantango Creek watershed. J Environ Qual 17:76–84. 1988, doi: 10.2134/jeq1988.00472425001700010011x.

Piotrowicz-cireslak, A. I.; Adomas, B. Herbicide phytotoxicity and resistance to herbicides in legume plants. Herbicides-Environmental Impact Studies and Management Approaches. IntechOpen, 2012, doi: 10.5772/31299.

Prata, F. et al. Glyphosate sorption and desorption in soils with different phosphorous levels. Sci. Agric., v. 60, n. 1, p. 175-180, 2003, doi: 10.1590/S0103-90162003000100026.

Rao, P.S.C.; Davidson, J.M. Estimation of pesticide retention and transformation parameters required in nonpoint source pollution models. In Environmental Impact of Nonpoint Source Pollution; Overcash, M.R., Davidson, J.M., Eds.; Ann Arbor Science: Ann Arbor, MI, USA, 1982.

Sánchez V, Francisco, López-Bellido J, Rodrigo MA, Rodríguez L. Enhancing the removal of atrazine from soils by electrokinetic-assisted phytoremediation using ryegrass (Lolium perenne L.). Chemosphere 232:204–212. 2019, doi: 10.1016/j.chemosphere.2019.05.216.

Scrano, L.; Bufo, S. A.; Cataldi, T. R. I.; Albanis, T. A. Surface retention and photochemical reactivity of the diphenylether herbicide oxyfluorfen. Journal of environmental quality, v. 33, p. 605-611, 2004, doi: 10.2134/jeq2004.6050.

Shapir N, Mongodin EF, Sadowsky MJ, Daugherty SC, Nelson KE, Wackett LP. Evolution of catabolic pathways: Genomic insights into microbial s-triazine metabolism. Journal of Bacteriology. 189: 674–682. 2007, doi: 10.1128/JB.01257-06.

Shapir N, Rosendahl C, Johnson G, Andreina M, Sadowsky MJ, Wackett LP. Substrate specificity and colorimetric assay for recombinant TrzN derived from Arthrobacter aurescens TC1. Appl Environ Microbiol 71:2214–2220. 2007, doi: 10.1128/AEM.71.5.2214-2220.

Shinde, S. Bioremediation. An overview. Recent Research in Science and Technology 5: 67-72 Silva, E., Fialho, A.M., Sá-Correia, I., Burns, R.G. e Shaw, L.J. 2004. Combined bioaugmentation and biostimulation to cleanup soil contaminated with high atrazine concentrations. Environ. Sci. Technol. 38: 632-637. 2013, doi: 10.1021/es0300822.

Siedt M, Schäffer A, Smith KEC, Nabel M, Roß-Nickoll M, van Dongen JT. Comparing straw, compost, and biochar regarding their suitability as agricultural soil amendments to affect soil structure, nutrient leaching, microbial communities, and the fate of pesticides. Sci Total Environ 751:141607. 2021, doi: 10.1016/j.scitotenv.2020.141607.

Silva, V. et al. Evaluation of Arthrobacter aurescens Strain TC1 as Bioaugmentation Bacterium in Soils Contaminated with the Herbicidal Substance Terbuthylazine. PLoS One., pp. 1-15. 2015, doi: 10.1371/journal.pone.0144978.

Sing OV, Jain RK. Phytoremediation of toxic aromatic pollutants from soil. Appl Microbiol Biotechnol 63: 128–135. 2003, doi: 10.1007/s00253-003-1425-1.

Singh T, Singh DK. Phytoremediation of organochlorine pesticides: concept, method, and recent developments. Int J Phytoremediation 19:834–843. 2017, doi: 10.1080/15226514.2017.1290579.

Singh, S. N. Microbe-induced degradation of pesticides. Cham, Switzerlanda: Springer, 2016.Stipičević, S., Galzina, N., Kolić, N., Jurina, T., Mendaš, G., Dvoršćak, M., Sviličić Petrić, I., Barić, K.,Drevenkar, V. Distribution of terbuthylazine and atrazine residues in crop-cultivated soil: The effect of herbicide application rate on herbicide persistence. 259. Geoderma, 2015, doi: 10.1016/j.geoderma.2015.06.018.

Stipicevic, S.; Galzina, N.; Udikovic-kolic, N.; Jurina, T.; Mendas, G.; Dvorscak, M.; Petric, I.; Baric, K.; Drevenkar, V. Distribution of terbuthylazine and atrazine residues in crop-cultivated soil: The effect of herbicide application rate on herbicide persistence. Geoderma, v. 259, n. 260, p. 300-309, 2015, doi: 10.1016/j.geoderma.2015.06.018.

Stipicevic, S.; Gordana, D. M.; Fingler, S.; Galzina, N.; Baric, K. Dissipation dynamics of terbuthylazine in soil during the maize growing season. Archives of Industrial Hygiene and Toxicology, v. 68, n. 4, p. 336-342, 2017, doi: 10.1515/aiht-2017-68-3063.

Struthers JK, Jayachandran K, Moorman TB. Biodegradation of atrazine by Agrobacterium radiobacter J14a and use of this strain in bioremediation of contaminated soil. Appl Environ Microbiol 64:3368–3375. 1998, doi: 10.1128/aem.64.9.3368-3375.

Tasca, A. L.; Puccini, M.; Fletcher, A. Terbuthylazine and desethylterbuthylazine: Recent occurrence, mobility and removal techniques. Chemosphere. 2018: 94-104, doi: 10.1016/j.chemesphere.2018.03.091.

Velini, E. D.; Negrisoli, E. Controle de plantas daninhas em cana crua. In: Congresso brasileiro da ciência das plantas daninhas, 22, , 2000, p.148-164.

Vidali, M. Bioremediation. An overview. Pure Appl. Chem. 73, 1163-1172. 2001.

Volkering, F., Breure, A.M., Rulkens, W.H. Microbiological aspects of surfactant use for biological soil remediation. Biodegradation 8: 401–417. 1998, doi: 10.1023/a:1008291130109.

Wackett LP, Sadwosky MJ, Martinez B, Shapir N. Biodegradation of atrazine and related s-triazine compounds: from enzymes to field studies. Appl Microbiol Biotechnol. 58: 39–45. 2002, doi: 10.1007/s00253-001-0862-y.

Wilson PC, Whitwell T, Klaine SJ. Metalaxyl and simazine toxicity to and uptake by Typha latifolia. Arch Environ Contam Toxicol 39:282–288. 2000, doi: 10.1007/s002440010106.

Yu, Q. Q.; Lu, F. F.; Ma, L. Y.; Yang, H.; Song, N. H. Residues of reduced herbicides terbuthylazine, ametryn, and atrazine and toxicology to maize and the environment through salicylic acid. ACD Omega, v. 6, p. 27396-27404, 2021, doi: 10.1021/acsomega.1c04315.

Zablotowicz RM, Hoagland RE, Locke MA. Biostimulation: enhancement of cometabolic processes to remediate pesticide contaminated soils. In: Pesticide Remediation in Soils and Water. Kerney PC and T Roberts (eds), Wiley series in Agrochemicals and Plant Protection. pp 217–250. 1998.

Zhang, J. L.; Qiao, C. L. Novel approaches for remediation of pesticide pollutants. International Journal of Environment and Pollution, v. 18, p. 423-433, 2002, doi: 10.1504/IJEP.2002.002337.

Downloads

Publicado

2023-01-22

Como Citar

Zuanazzi Tonello, C., Correa, N. B., & Colla, L. M. (2023). Bioremediation of terbuthylazine contaminated soil: a bibliometric and systematic review. Conjecturas, 23(2), 157–177. https://doi.org/10.53660/CONJ-2306-23A07

Edição

Seção

Artigos