Adição simultânea de nanopartículas de Cu e Sr em nanotubos de TiO2 sobre implantes de titânio: estudo de molhabilidade

Autores

  • Douglas Thainan Silva Lima Mendes Universidade Federal de Sergipe
  • Raul Lima Cavalcante Universidade Federal de Sergipe
  • Débora dos Santos Tavares Universidade Federal de Sergipe
  • Michelle Cardinale Souza Silva Macedo Universidade Federal de Sergipe
  • Cristiane Xavier Resende

DOI:

https://doi.org/10.53660/CONJ-257-113

Palavras-chave:

Biomateriais, TiO2, atividade bactericida, atividade osteogênica, molhabilidade

Resumo

A adição simultânea do Cu e Sr nos revestimentos de TiO2 sobre implantes de titânio pode resultar num biomaterial especializado, por conjugar as propriedades bactericidas e osteogênicas desses metais, respectivamente. O efeito desses metais na molhabilidade desses revestimentos foi avaliado. A anodização, o recozimento e a incorporação dos metais reduziram o ângulo de contato, aumentando a energia superficial, sugerindo que este revestimento pode elevar a bioatividade do implante de titânio.

Downloads

Não há dados estatísticos.

Referências

ABDULLAH, S. A.; SAHDAN, M. Z.; NAFARIZAL, N.; SAIM, H.; EMBONG, Z.; CIK ROHAIDA, C. H.; ADRIYANTO, F. Influence of substrate annealing on inducing Ti3+ and oxygen vacancy in TiO2 thin films deposited via RF magnetron sputtering. Applied Surface Science, v. 462, p. 575–582, dez. 2018.

AHMED, W.; ZHAI, Z.; GAO, C. Adaptive antibacterial biomaterial surfaces and their applications. Materials Today Bio, v. 2, p. 100017, mar. 2019.

ALMAGUER-FLORES, A.; SILVA-BERMÚDEZ, P.; RODIL, S. E. Nanostructured biomaterials with antimicrobial activity for tissue engineering. In: Nanostructured Biomaterials for Regenerative Medicine. [s.l.] Elsevier, 2020. p. 81–137.

ANDRADE, G. R. S.; NASCIMENTO, C. C.; SILVA JÚNIOR, E. C.; MENDES, D. T. S. L.; GIMENEZ, I. F. ZnO/Au nanocatalysts for enhanced decolorization of an azo dye under solar, UV-A and dark conditions. Journal of Alloys and Compounds, v. 710, 2017.

ARCIOLA, C. R.; CAMPOCCIA, D.; MONTANARO, L. Implant infections: adhesion, biofilm formation and immune evasion. Nature Reviews Microbiology, v. 16, n. 7, p. 397–409, 2 jul. 2018.

ASTASOV-FRAUENHOFFER, M.; KOEGEL, S.; WALTIMO, T.; ZIMMERMANN, A.; WALKER, C.; HAUSER-GERSPACH, I.; JUNG, C. Antimicrobial efficacy of copper-doped titanium surfaces for dental implants. Journal of Materials Science: Materials in Medicine, v. 30, n. 7, p. 84, 10 jul. 2019.

AZAM, A.; AHMED; OVES; KHAN; HABIB; MEMIC, A. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. International Journal of Nanomedicine, p. 6003, dez. 2012.

BANGERA, A. E.; APPAIAH, K. A conditional justification for the determination of surface energy of solids using contact angle methods. Materials Chemistry and Physics, v. 234, p. 168–171, ago. 2019.

BI, Y.; XIA, G.; SHI, C.; WAN, J.; LIU, L.; CHEN, Y.; WU, Y.; ZHANG, W.; ZHOU, M.; HE, H.; LIU, R. Therapeutic strategies against bacterial biofilms. Fundamental Research, v. 1, n. 2, p. 193–212, mar. 2021.

CHAVES, E. DE S. Anodização de ligas de Ti-Nb-Si para aplicações odontológicas. [s.l.] Universidade Federal de Sergipe, 2015.

CHEN, B.; YOU, Y.; MA, A.; SONG, Y.; JIAO, J.; SONG, L.; SHI, E.; ZHONG, X.; LI, Y.; LI1, C. Zn-Incorporated TiO 2 Nanotube Surface Improves Osteogenesis Ability Through In fl uencing Immunomodulatory Function of Macrophages. 2020.

COTTON, G. C.; LAGESSE, N. R.; PARKE, L. S.; MELEDANDRI, C. J. Antibacterial Nanoparticles. In: Comprehensive Nanoscience and Nanotechnology. [s.l.] Elsevier, 2019. p. 65–82.

FAN, Y.; ZHANG, Y.; ZHAO, Q.; XIE, Y.; LUO, R.; YANG, P.; WENG, Y. Immobilization of nano Cu-MOFs with polydopamine coating for adaptable gasotransmitter generation and copper ion delivery on cardiovascular stents. Biomaterials, v. 204, p. 36–45, jun. 2019.

FERRARIS, S.; SPRIANO, S. Antibacterial titanium surfaces for medical implants. Materials Science & Engineering C, v. 61, p. 965–978, 2016.

FILIPOVIĆ, U.; DAHMANE, R. G.; GHANNOUCHI, S.; ZORE, A.; BOHINC, K. Bacterial adhesion on orthopedic implants. Advances in Colloid and Interface Science, v. 283, p. 102228, set. 2020.

FLEMMING, H.-C.; WINGENDER, J.; SZEWZYK, U.; STEINBERG, P.; RICE, S. A.; KJELLEBERG, S. Biofilms: an emergent form of bacterial life. Nature Reviews Microbiology, v. 14, n. 9, p. 563–575, 11 set. 2016.

GAO, P.; QIU, H.; XIONG, K.; LI, X.; TU, Q.; WANG, H.; LYU, N.; CHEN, X.; HUANG, N.; YANG, Z. Metal-catechol-(amine) networks for surface synergistic catalytic modification: Therapeutic gas generation and biomolecule grafting. Biomaterials, v. 248, p. 119981, jul. 2020.

GODOY-GALLARDO, M.; ECKHARD, U.; DELGADO, L. M.; ROO PUENTE, Y. J. D. DE; HOYOS-NOGUÉS, M.; GIL, F. J.; PEREZ, R. A. Antibacterial approaches in tissue engineering using metal ions and nanoparticles: From mechanisms to applications. Bioactive Materials, v. 6, n. 12, p. 4470–4490, dez. 2021.

GONZÁLEZ-HENRÍQUEZ, C.; SARABIA-VALLEJOS, M.; RODRÍGUEZ HERNANDEZ, J. Antimicrobial Polymers for Additive Manufacturing. International Journal of Molecular Sciences, v. 20, n. 5, p. 1210, 10 mar. 2019.

GRYNPAS, M. D.; MARIE, P. J. Effects of low doses of strontium on bone quality and quantity in rats. Bone, v. 11, n. 5, p. 313–319, jan. 1990.

GUO, Z.; CHEN, C.; GAO, Q.; LI, Y.; ZHANG, L. Fabrication of silver-incorporated TiO 2 nanotubes and evaluation on its antibacterial activity. Materials Letters, v. 137, p. 464–467, 2014.

HROMADKO, L.; JÄGER, A.; SOPHA, H.; MACAK, J. M.; TESAR, K.; KNOTEK, P. TiO 2 nanotubes grown on Ti substrates with different microstructure. Materials Research Bulletin, v. 103, n. 2010, p. 197–204, 2018.

HUANG, Q.; LI, X.; ELKHOOLY, T. A.; LIU, X.; ZHANG, R.; WU, H.; FENG, Q.; LIU, Y. The Cu-containing TiO2 coatings with modulatory effects on macrophage polarization and bactericidal capacity prepared by micro-arc oxidation on titanium substrates. Colloids and Surfaces B: Biointerfaces, v. 170, p. 242–250, out. 2018.

INDIRA, K.; MUDALI, U. K.; NISHIMURA, T.; RAJENDRAN, N. A Review on TiO2 Nanotubes: Influence of Anodization Parameters, Formation Mechanism, Properties, Corrosion Behavior, and Biomedical Applications. Journal of Bio- and Tribo-Corrosion, v. 1, n. 4, p. 1–22, 2015.

INDIRA, K.; MUDALI, U. K.; RAJENDRAN, N. In-vitro biocompatibility and corrosion resistance of strontium incorporated TiO 2 nanotube arrays for orthopaedic applications. Journal of Biomaterials Applications, v. 29, n. 1, p. 113–129, 16 jul. 2014.

KUNČICKÁ, L.; KOCICH, R.; LOWE, T. C. Advances in metals and alloys for joint replacement. Progress in Materials Science, v. 88, p. 232–280, 2017.

LI, B.; MORIARTY, T. F.; WEBSTER, T.; XING, M. (EDS.). Racing for the Surface. Cham: Springer International Publishing, 2020.

LIMA, G. G. DE; LUZ, A. R. DA; PEREIRA, B. L.; SZESZ, E. M.; SOUZA, G. B. DE; LEPIENSKI, C. M.; KUROMOTO, N. K.; NUGENT, M. J. D. Tailoring surface properties from nanotubes and anodic layers of titanium for biomedical applications. [s.l.] Elsevier Inc., 2019.

LIN, M.-H.; WANG, Y.-H.; KUO, C.-H.; OU, S.-F.; HUANG, P.-Z.; SONG, T.-Y.; CHEN, Y.-C.; CHEN, S.-T.; WU, C.-H.; HSUEH, Y.-H.; FAN, F.-Y. Hybrid ZnO/chitosan antimicrobial coatings with enhanced mechanical and bioactive properties for titanium implants. Carbohydrate Polymers, v. 257, p. 117639, abr. 2021.

LIU, G.; DU, K.; WANG, K. Surface wettability of TiO 2 nanotube arrays prepared by electrochemical anodization. Applied Surface Science, v. 388, n. 2015, p. 313–320, 2016.

LIU, K.; CAO, M.; FUJISHIMA, A.; JIANG, L. Bio-Inspired Titanium Dioxide Materials with Special Wettability and Their Applications. Chemical Reviews, v. 114, n. 19, p. 10044–10094, 8 out. 2014.

LIU, X.; CHU, P.; DING, C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering: R: Reports, v. 47, n. 3–4, p. 49–121, 24 dez. 2004.

LÓPEZ-VALVERDE, N.; MURIEL-FERNÁNDEZ, J.; GÓMEZ DE DIEGO, R.; RAMÍREZ, J.; LÓPEZ-VALVERDE, A. Effect of Strontium-Coated Titanium Implants on Osseointegration in Animal Models: A Literature Systematic Review. The International Journal of Oral & Maxillofacial Implants, v. 34, n. 6, p. 1389–1396, nov. 2019.

MANI, G. Surface properties and characterization of metallic biomaterials. In: Surface Coating and Modification of Metallic Biomaterials. [s.l.] Elsevier. p. 61–77.

MARK WELLER, TINA OVERTON, JONATHAN ROURKE, F. A. Química Inorgânica. Porto Alegre - RS: 2015.

MAZARE, A.; TOTEA, G.; BURNEI, C.; SCHMUKI, P.; DEMETRESCU, I.; IONITA, D. Corrosion, antibacterial activity and haemocompatibility of TiO 2 nanotubes as a function of their annealing temperature. Corrosion Science, v. 103, p. 215–222, fev. 2016.

MEI, S. et al. Antibacterial effects and biocompatibility of titanium surfaces with graded silver incorporation in titania nanotubes. Biomaterials, v. 35, n. 14, p. 4255–4265, 2014.

MENDES, D. T. S. L.; CHAVES, E. DE S.; MACEDO, M. C. S. S.; RESENDE, C. X. Estudo da molhabilidade de nanotubos de TiO2 incorporados com nanopartículas de Ag e ZnO / Study of the wetness os TiO2 nanotubes incorporated with Ag and ZnO nanoparticles. Brazilian Journal of Development, v. 6, n. 10, p. 74439–74453, 2020.

MOHAN, L.; ANANDAN, C.; RAJENDRAN, N. Electrochemical behaviour and bioactivity of self-organized TiO2 nanotube arrays on Ti-6Al-4V in Hanks’ solution for biomedical applications. Electrochimica Acta, v. 155, p. 411–420, 2015.

NASCIMENTO, C. DO; PITA, M. S.; SANTOS, E. DE S.; MONESI, N.; PEDRAZZI, V.; ALBUQUERQUE JUNIOR, R. F. DE; RIBEIRO, R. F. Microbiome of titanium and zirconia dental implants abutments. Dental Materials, v. 32, n. 1, p. 93–101, jan. 2016.

NASCIMENTO, D. S. Desenvolvimento de Ligas Ti-10Mo-xSi submetidas à aodização para efeitos de crescimento de nanotubos com possível aplicação em próteses odontológicas. Dissertação de Mestrado. Programa de Pós-Graduação em Ciência e ENgenharia de Materiais - P2CEM. Universisdade Federal de Sergipe - UFS. São Cristóvão - SE. 2018.

PACHAIAPPAN, R.; RAJENDRAN, S.; SHOW, P. L.; MANAVALAN, K.; NAUSHAD, M. Metal/metal oxide nanocomposites for bactericidal effect: A review. Chemosphere, p. 128607, out. 2020.

PAN, C.; LIU, TINGTING; YANG, Y.; LIU, TAO; GONG, Z.; WEI, Y.; QUAN, L.; YANG, Z.; LIU, S. Incorporation of Sr2+ and Ag nanoparticles into TiO2 nanotubes to synergistically enhance osteogenic and antibacterial activities for bone repair. Materials & Design, v. 196, p. 109086, nov. 2020.

QUINN, J.; MCFADDEN, R.; CHAN, C.-W.; CARSON, L. Titanium for Orthopedic Applications: An Overview of Surface Modification to Improve Biocompatibility and Prevent Bacterial Biofilm Formation. iScience, v. 23, n. 11, p. 101745, nov. 2020.

ROUX, C. Antifracture efficacy of strontium ranelate in postmenopausal osteoporosis. Bone, v. 40, n. 5, p. S9–S11, maio 2007.

RUPP, F.; GITTENS, R. A.; SCHEIDELER, L.; MARMUR, A.; BOYAN, B. D.; SCHWARTZ, Z.; GEIS-GERSTORFER, J. A review on the wettability of dental implant surfaces I: Theoretical and experimental aspects. Acta Biomaterialia, v. 10, n. 7, p. 2894–2906, jul. 2014.

SADOWSKA, J. M.; GENOUD, K. J.; KELLY, D. J.; O’BRIEN, F. J. Bone biomaterials for overcoming antimicrobial resistance: Advances in non-antibiotic antimicrobial approaches for regeneration of infected osseous tissue. Materials Today, v. 46, p. 136–154, jun. 2021.

SHAH, N. B.; TANDE, A. J.; PATEL, R.; BERBARI, E. F. Anaerobic prosthetic joint infection. Anaerobe, v. 36, p. 1–8, dez. 2015.

SHAW, D. Introduction to Colloid and Surface Chemistry - 4th Edition. 4. ed. Oxford. 2013.

SHI, J.; LI, Y.; GU, Y.; QIAO, S.; ZHANG, X.; LAI, H. Effect of titanium implants with strontium incorporation on bone apposition in animal models: A systematic review and meta-analysis. Scientific Reports, v. 7, n. 1, p. 15563, 14 dez. 2017.

SHIN, D. H.; SHOKUHFAR, T.; CHOI, C. K.; LEE, S. H.; FRIEDRICH, C. Wettability changes of TiO2 nanotube surfaces. Nanotechnology, v. 22, n. 31, 2011.

SILVA, J. S. P. Estudo das características físico-químicas e biológicas pela adesão de osteoblastos em superfícies de titânio modificadas pela nitretação em plasma. [s.l.] Universidade de São Paulo - USP, 2008.

SINGH, A.; GAUTAM, P. K.; VERMA, A.; SINGH, V.; SHIVAPRIYA, P. M.; SHIVALKAR, S.; SAHOO, A. K.; SAMANTA, S. K. Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: A review. Biotechnology Reports, v. 25, p. e00427, mar. 2020.

SPRIANO, S. et al. How do wettability, zeta potential and hydroxylation degree affect the biological response of biomaterials? Materials Science and Engineering: C, v. 74, p. 542–555, maio 2017.

SUN, Y.; SUN, S.; LIAO, X.; WEN, J.; YIN, G.; PU, X.; YAO, Y.; HUANG, Z. Effect of heat treatment on surface hydrophilicity-retaining ability of titanium dioxide nanotubes. Applied Surface Science, v. 440, p. 440–447, maio 2018.

TANZI, M. C.; FARÈ, S.; CANDIANI, G. Interactions Between Biomaterials and the Physiological Environment. In: Foundations of Biomaterials Engineering. [s.l.] Elsevier, 2019. p. 329–391.

WANG, S.; LIU, Y.; ZHANG, C.; LIAO, Z.; LIU, W. The improvement of wettability, biotribological behavior and corrosion resistance of titanium alloy pretreated by thermal oxidation. Tribology International, v. 79, p. 174–182, nov. 2014.

YANG, T.; QIAN, S.; QIAO, Y.; LIU, X. Cytocompatibility and antibacterial activity of titania nanotubes incorporated with gold nanoparticles. Colloids and Surfaces B: Biointerfaces, v. 145, p. 597–606, set. 2016.

YU, H.; HUANG, X.; YANG, X.; LIU, H.; ZHANG, M.; ZHANG, X.; HANG, R.; TANG, B. Synthesis and biological properties of Zn-incorporated micro/nano-textured surface on Ti by high current anodization. Materials Science and Engineering: C, v. 78, p. 175–184, set. 2017.

YUAN, Z.; HE, Y.; LIN, C.; LIU, P.; CAI, K. Antibacterial surface design of biomedical titanium materials for orthopedic applications. Journal of Materials Science & Technology, v. 78, p. 51–67, jul. 2021.

YUAN, Z.; LIU, P.; HAO, Y.; DING, Y.; CAI, K. Colloids and Surfaces B : Biointerfaces Construction of Ag-incorporated coating on Ti substrates for inhibited bacterial growth and enhanced osteoblast response. v. 171, n. July, p. 597–605, 2018.

ZAFAR, M. S.; FAROOQ, I.; AWAIS, M.; NAJEEB, S.; KHURSHID, Z.; ZOHAIB, S. Bioactive Surface Coatings for Enhancing Osseointegration of Dental Implants. In: Biomedical, Therapeutic and Clinical Applications of Bioactive Glasses. [s.l.] Elsevier, 2019. p. 313–329.

ZHANG, C. et al. Silver nanowires on acid-alkali-treated titanium surface: Bacterial attachment and osteogenic activity. Ceramics International, v. 45, n. 18, p. 24528–24537, dez. 2019.

ZHANG, L.; GUO, J.; YAN, T.; HAN, Y. Fibroblast responses and antibacterial activity of Cu and Zn co-doped TiO2 for percutaneous implants. Applied Surface Science, v. 434, p. 633–642, mar. 2018.

ZHANG, M. et al. Temperature-dependent differences in wettability and photocatalysis of TiO 2 nanotube arrays thin films. Applied Surface Science, v. 356, p. 546–552, 2015.

ZHANG, X. et al. Synergistic effects of lanthanum and strontium to enhance the osteogenic activity of TiO2 nanotube biological interface. Ceramics International, v. 46, n. 9, p. 13969–13979, jun. 2020.

ZHANG, Y.; WANG, K.; SONG, Y.; FENG, E.; DONG, K.; HAN, Y.; LU, T. Ca substitution of Sr in Sr-doped TiO2 nanotube film on Ti surface for enhanced osteogenic activity. Applied Surface Science, v. 528, p. 147055, out. 2020.

ZHAO, L.; WANG, H.; HUO, K.; CUI, L.; ZHANG, W.; NI, H.; ZHANG, Y.; WU, Z.; CHU, P. K. Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials, v. 32, n. 24, p. 5706–5716, 2011.

Downloads

Publicado

2021-11-05

Como Citar

Mendes, D. T. S. L. ., Cavalcante, . R. L. ., Tavares, D. dos S. ., Macedo, M. C. S. S., & Resende, C. X. . (2021). Adição simultânea de nanopartículas de Cu e Sr em nanotubos de TiO2 sobre implantes de titânio: estudo de molhabilidade. Conjecturas, 21(5), 251–269. https://doi.org/10.53660/CONJ-257-113

Edição

Seção

Artigos