Neuroprotective effects of proanthocyanidins of grape seed extracts against oxidative stress and apoptosis induced by 6-hydroxydopamine in PC12 cells

Autores

  • Patricia de Araújo Rodrigues Federal University of Ceará https://orcid.org/0000-0003-2959-2591
  • Selene Maia de Morais State University of Ceará
  • Juliana Fernandes Pereira Federal University of Ceará
  • Albert Layo Costa de Assis Federal University of Ceará https://orcid.org/0000-0001-8295-0795
  • Amanda Aragão Alves Drug Research and Development Center
  • Stephen Rathinara Benjamin Federal University of Ceará
  • Ícaro Gusmão Pinto Vieira State University of Ceará
  • Nuno Jesus Machado University of Coimbra https://orcid.org/0000-0001-5097-4231
  • Marta Regina Santos do Carmo Federal University of Ceará
  • Geanne Matos de Andrade Federal University of Ceará

DOI:

https://doi.org/10.53660/CONJ-077-109-2

Palavras-chave:

proanthocyanidins, parkinson's disease, oxidative stress, apoptosis, PC12 cells

Resumo

A doença de Parkinson (DP) é um distúrbio neurológico caracterizado pela destruição neuronal dopaminérgica. Devido à óbvia existência de ácidos graxos poliinsaturados (PUFA) principalmente em sementes de uva, Vitis Vinifera L era mais comumente usado em doenças cardiovasculares. O objetivo deste estudo foi investigar o papel das proantocianidinas do extrato de semente de uva exibindo efeitos neurocitoprotetores contra a citotoxicidade induzida por 6-hidroxidopamina (6-OHDA) em células PC12, prevenindo a depleção do conteúdo de GSH e reduzindo os níveis de nitrito e malondialdeído. As células foram pré-tratadas com proantocianidinas (100 µg / ml) e subsequentemente expostas a 6-OHDA a 50% da concentração letal. Nossos resultados demonstraram que a resposta ao PA em células PC12 aumentou significativamente a viabilidade celular, diminuiu a citotoxicidade. A atividade de apoptose induzida por OHDA foi determinada por citometria de fluxo usando anexina v e caspase-3 clivada e expressão de caspase-7 foram analisadas por western blot. Além disso, medimos marcadores de estresse oxidativo, como; Níveis de MDA, GSH e nitrito em células PC12. As proantocianidinas preveniram a citotoxicidade induzida por 6-OHDA, preveniram a depleção do conteúdo de GSH e reduziram os níveis de nitrito e malondialdeído. Além disso, as proantocianidinas atenuaram a redução induzida por 6-OHDA das proteínas caspase-3 e caspase-7 clivadas. Esses resultados sugerem que as proantocianidinas protegem as células PC12 contra a neurotoxicidade induzida pela 6-OHDA por meio da atividade antioxidante e apoptótica.

Downloads

Não há dados estatísticos.

Referências

ABEER E. ABD EL-WAHAB, HALA EL-ADAWI, H. S. KASSEM. Towards Understanding The Hepatoprotective effect of Grape Seeds Extract on Cholesterol-Fed Rats. Australian Journal of Basic and Applied Sciences, v. 2, n. 3, p. 412–417, 2008.

BAGLIO, F. et al. Functional brain changes in early Parkinson’s disease during motor response and motor inhibition. Neurobiology of Aging, v. 32, n. 1, p. 115–124, 2011.

BLADÉ, C. et al. Proanthocyanidins in health and disease. BioFactors, v. 42, n. 1, p. 5–12, 2016.

CHO, E. S. et al. Cocoa procyanidins attenuate 4-hydroxynonenal-induced apoptosis of PC12 cells by directly inhibiting mitogen-activated protein kinase kinase 4 activity. Free Radical Biology and Medicine, v. 46, n. 10, p. 1319–1327, 2009.

DATLA, K. P. et al. Short-term supplementation with plant extracts rich in flavonoids protect nigrostriatal dopaminergic neurons in a rat model of parkinson’s disease. Journal of the American College of Nutrition, v. 26, n. 4, p. 341–349, 2007.

DAUER, W.; PRZEDBORSKI, S. Parkinson’s disease: mechanisms and models. Neuron, v. 39, n. 6, p. 889–909, 2003.

ELLMAN, G. L. Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, v. 82, n. 1, p. 70–77, 1959.

FEARNLEY, J. M.; LEES, A. J. Ageing and parkinson’s disease: Substantia nigra regional selectivity. Brain, v. 114, n. 5, p. 2283–2301, 1991.

FERNÁNDEZ-IGLESIAS, A. et al. Grape seed proanthocyanidin extract improves the hepatic glutathione metabolism in obese Zucker rats. Molecular nutrition & food research, v. 58, n. 4, p. 727–37, 2014.

FISKUM, G. et al. Mitochondrial mechanisms of neural cell death and neuroprotective interventions in Parkinson’s disease. Annals of the New York Academy of Sciences, v. 991, p. 111–9, 2003.

FRANGI, ENRICO, BERTANI, M.; MUSTICH, G.; TUCCINI, G. Process for preparing grapeseed extracts enriched in procyanidol oligomers. Italy, 1996.

GAO, X. et al. Habitual intake of dietary flavonoids and risk of Parkinson disease. Neurology, v. 78, n. 15, p. 1138–1145, 2012.

GLINKA, Y. Y.; YOUDIM, M. B. H. Inhibition of mitochondrial complexes I and IV by 6-hydroxydopamine. European Journal of Pharmacology: Environmental Toxicology and Pharmacology, v. 292, n. 3–4, p. 329–332, 1995.

GREEN, D. R. Apoptotic pathways: the roads to ruin. Cell, v. 94, n. 6, p. 695–8, 18 set. 1998.

GREEN, L. C.; TANNENBAUM, S. R.; GOLDMAN, P. Nitrate synthesis in the germfree and conventional rat. Science (New York, N.Y.), v. 212, n. 4490, p. 56–8, 1981.

GUO, S. et al. Protective effects of green tea polyphenols in the 6-OHDA rat model of Parkinson’s disease through inhibition of ROS-NO pathway. Biological Psychiatry, v. 62, n. 12, p. 1353–1362, 2007.

JACOBSON, M. D. Reactive oxygen species and programmed cell death. Trends in biochemical sciences, v. 21, n. 3, p. 83–86, 1996.

JEREZ, M. et al. A comparison between bark extracts from Pinus pinaster and Pinus radiata: Antioxidant activity and procyanidin composition. Food Chemistry, v. 100, n. 2, p. 439–444, 2007.

KAUR, D. et al. Glutathione depletion in immortalized midbrain-derived dopaminergic neurons results in increases in the labile iron pool: Implications for Parkinson’s disease. Free Radical Biology and Medicine, v. 46, n. 5, p. 593–598, 2009.

KAUR, M. et al. Grape Seed Extract Induces Cell Cycle Arrest and Apoptosis in Human Colon Carcinoma Cells. Nutrition and Cancer, v. 60, n. sup1, p. 2–11, 2008.

LI, S. et al. Efficacy of Procyanidins against In Vivo Cellular Oxidative Damage: A Systematic Review and Meta-Analysis. PLOS ONE, v. 10, n. 10, p. e0139455, 2015.

LI, W. G. et al. Anti-inflammatory effect and mechanism of proanthocyanidins from grape seeds. Acta pharmacologica Sinica, v. 22, n. 12, p. 1117–20, 2001.

LI, Z. et al. Neurotrophin‐3 reduces apoptosis induced by 6‐OHDA in PC12 cells through Akt signaling pathway. International Journal of Developmental Neuroscience, v. 26, n. 6, p. 635–640, 2008.

LIU, S. Extraction and Characterization of Proanthocyanidins from Grape Seeds. The Open Food Science Journal, v. 6, n. 1, p. 5–11, 2012.

LU, Z. et al. Structure-activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives. Neurochemistry International, v. 48, n. 4, p. 263–274, 2006.

MAGALINGAM, K. B. et al. Quercetin Glycosides Induced Neuroprotection by Changes in the Gene Expression in a Cellular Model of Parkinson’s Disease. Journal of Molecular Neuroscience, v. 55, n. 3, p. 609–617, 2015.

MARTÍN, S. et al. Protective Effects of Merlot Red Wine Extract and its Major Polyphenols in Pc12 Cells under Oxidative Stress Conditions. Journal of Food Science, v. 78, n. 1, 2013.

MARTINEZ-MICAELO, N. et al. Procyanidins and inflammation: Molecular targets and health implications. BioFactors, v. 38, n. 4, p. 257–265, 2012.

MIHARA, M.; UCHIYAMA, M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Analytical biochemistry, v. 86, n. 1, p. 271–8, 1978.

MITTLER, R. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, v. 7, n. 9, p. 405–410, 2002.

MORIGUCHI, S.; YABUKI, Y.; FUKUNAGA, K. Reduced calcium/calmodulin-dependent protein kinase II activity in the hippocampus is associated with impaired cognitive function in MPTP-treated mice. Journal of Neurochemistry, v. 120, n. 4, p. 541–551, 2012.

NAKAMURA, Y.; TSUJI, S.; TONOGAI, Y. Analysis of Proanthocyanidins in Grape Seed Extracts, Health Foods and Grape Seed Oils. JOURNAL OF HEALTH SCIENCE, v. 49, n. 1, p. 45–54, 2003.

OUYANG, M.; SHEN, X. Critical role of ASK1 in the 6-hydroxydopamine-induced apoptosis in human neuroblastoma SH-SY5Y cells. Journal of Neurochemistry, v. 97, n. 1, p. 234–244, 2006.

PAVLICA, S.; GEBHARDT, R. Protective effects of flavonoids and two metabolites against oxidative stress in neuronal PC12 cells. Life Sciences, v. 86, n. 3–4, p. 79–86, 2010.

PUIGGRÒS, F. et al. Differential Modulation of Apoptotic Processes by Proanthocyanidins as a Dietary Strategy for Delaying Chronic Pathologies. Critical Reviews in Food Science and Nutrition, v. 54, n. 3, p. 277–291, 2014.

SAAD, A. A.; YOUSSEF, M. I.; EL-SHENNAWY, L. K. Cisplatin induced damage in kidney genomic DNA and nephrotoxicity in male rats: The protective effect of grape seed proanthocyanidin extract. Food and Chemical Toxicology, v. 47, n. 7, p. 1499–1506, 2009.

SAFWEN, K. et al. Protective Effect of Grape Seed and Skin Extract on Cerebral Ischemia in Rat: Implication of Transition Metals. International Journal of Stroke, v. 10, n. 3, p. 415–424, 2015.

SAITO, Y. et al. Molecular mechanisms of 6-hydroxydopamine-induced cytotoxicity in PC12 cells: Involvement of hydrogen peroxide-dependent and -independent action. Free Radical Biology and Medicine, v. 42, n. 5, p. 675–685, 2007.

SHUI GUAN. et al. Protective effect of protocatechuic acid from Alpinia oxyphylla on hydrogen peroxide-induced oxidative PC12 cell death. European Journal of Pharmacology, v. 538, n. 1–3, p. 73–79, 2006.

SIMOLA, N.; MORELLI, M.; CARTA, A. R. The 6-hydroxydopamine model of Parkinson’s disease. Neurotoxicity research, v. 11, n. 3–4, p. 151–67, 2007.

SMERIGLIO, A. et al. Proanthocyanidins and hydrolysable tannins: occurrence, dietary intake and pharmacological effects. British Journal of Pharmacology, v. 174, p.1244-1262, 2017.

STRATHEARN, K. E. et al. Neuroprotective effects of anthocyanin- and proanthocyanidin-rich extracts in cellular models of Parkinson׳s disease. Brain Research, v. 1555, p. 60–77, 2014.

TEIXEIRA, M. D. A. et al. Catechin attenuates behavioral neurotoxicity induced by 6-OHDA in rats. Pharmacology Biochemistry and Behavior, v. 110, p. 1–7, 2013.

VALKO, M. et al. Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology, v. 39, n. 1, p. 44–84, 2007.

XU, R. et al. Ribozyme-mediated inhibition of caspase-3 activity reduces apoptosis induced by 6-hydroxydopamine in PC12 cells. Brain research, v. 899, n. 1–2, p. 10–9, 2001.

ZHAO, Y.N. et al. The neuroprotective effects of grape seed proanthocyanidin on rat brain injury caused by chronic intermittent hypoxia. NEUROLOGY ASIA, v. 19, n. 4, p. 399-403, 2014.

ZHU, X. et al. The Role of Mitogen-Activated Protein Kinase Pathways in Alzheimer’s Disease. Neurosignals, v. 11, n. 5, p. 270–281, 2002.

Downloads

Publicado

2021-06-30

Como Citar

Rodrigues, P. de A., Maia de Morais, S. ., Fernandes Pereira, J. ., Costa de Assis, A. L. ., Aragão Alves, A., Benjamin, S. R., Pinto Vieira, Ícaro G. ., Machado, N. J. ., Santos do Carmo, M. R. ., & Andrade , G. M. de. (2021). Neuroprotective effects of proanthocyanidins of grape seed extracts against oxidative stress and apoptosis induced by 6-hydroxydopamine in PC12 cells. Conjecturas, 21(2), 68–86. https://doi.org/10.53660/CONJ-077-109-2

Edição

Seção

Artigos